
Efficient Volume Raycasting for Interactive SPH Applications

Diploma Thesis in Computer Science

submitted by

Max A. Limper

born on November 17th, 1985 in Aachen

written at

Computer Graphics and Multimedia Systems Group

Department of Electrical Engineering and Computer Science

University of Siegen, Germany.

Advisors:

Prof. Dr. Andreas Kolb

Dipl.-Inf. Jens Orthmann

Started on: October 1st, 2011

Finished on: March 30th, 2012

Eidesstattliche Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungs-

leistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen

wurden, sind als solche gekennzeichnet.

Siegen, den 29. März 2012

i

Abstract

Within this thesis, a new volume raycasting approach for particle-based SPH simulations

is presented. The approach is combining two existing methods and can be seen as an al-

ternative which is especially suited for interactive simulation environments. A perspective

access structure enables several optimization mechanisms which can speed up the raycaster

significantly. Besides that, the ray-based sampling enables a normalization of the samples,

following the SPH model. Such a normalization can be used for a correct visualization as well

as for a simple contour shading method. Finally, a precise method for gradient computation

makes the integration of local volume illumination possible.

Zusammenfassung

Im Rahmen dieser Arbeit wird ein neuer Ansatz zum effizienten Volume-Raycasting für

partikelbasierte Simulationen nach dem SPH-Modell vorgestellt. Der Ansatz verbindet zwei

bekannte Verfahren und stellt eine Alternative dar, welche insbesondere für interaktive Simu-

lationsumgebungen geeignet ist. Eine perspektivische Zugriffsstruktur ermöglicht verschiede-

ne Optimierungsmechanismen welche die Geschwindigkeit des Raycasters erheblich verbessern

können. Des Weiteren ermöglicht das strahlbasierte Vorgehen eine Normalisierung der Samp-

les nach dem SPH-Modell, was neben einer korrekten Visualisierung auch für einen einfachen

Ansatz zur Visualisierung von Konturen genutzt werden kann. Ein präzises Verfahren zur

Gradientenbestimmung ermöglicht schließlich die Integration lokaler Beleuchtungseffekte.

ii

Acknowledgements

First of all, I would like to thank my parents, brothers and friends, especially my girlfriend

Marieke, for their emotional support and understanding during my work on this thesis.

I would also like to thank my supervisors Jens Orthmann and Andreas Kolb for their

support and their supervision of my work.

Finally, special thanks go to my fellow student Jan Reckling, who has offered his time to

proof-read this work.

Max Limper

Danksagung

Zunächst möchte ich mich bei meinen Eltern, Brüdern und Freunden, besonders bei meiner

Freundin Marieke, für ihre emotionale Unterstützung und ihr Verständnis während der Zeit

meiner Diplomarbeit bedanken.

Weiterhin gilt mein Dank meinen Betreuern Jens Orthmann und Andreas Kolb für ihre

Unterstützung und Betreuung meiner Arbeit.

Schließlich möchte ich meinem Kommilitonen Jan Reckling dafür danken, dass er seine

Zeit geopfert hat um diese Arbeit Korrektur zu lesen.

Max Limper

iii

A Note on First-Person Perspective

A diploma thesis always involves a lot of contributions from the supervisors. For the

programming part, the SVT framework of the Computer Graphics Group at Siegen University

was used. I was able to build my experimental raycasting application on top of an existing

SPH simulation that was created by Jens Orthmann. Also, Jens was always at hand when

questions concerning the integration into the framework arised, as well as for lots of other

questions. The main idea of using a perspective grid together with a ray-based approach,

which was the starting point of this thesis, was also founded by Jens and Prof. Andreas Kolb.

If this was a scientific paper, I would therefore be probably be named as one of three authors

and write my part in the plural form (“We present ...“) instead of using the singular (“I

present“) or avoiding any grammatical person at all by employing passive constructs all the

time (“... is presented. “). Because of that, and because of personal taste, I decided to use

the plural form throughout this thesis.

iv

List of Figures

3.1 The SPH volume raycasting pipeline . 10

3.2 Sampling Rate Reduction on User Interaction 12

3.3 Transfer Function Undersampling and Stochastic Jittering 13

3.4 A simplified example of our perspective grid in view space 17

3.5 Perspective grids . 18

3.6 Uniform grid cells (2D situation) . 20

3.7 Cell size computation in view space . 20

3.8 A map from particles to relevant cells . 22

3.9 A map from cells to relevant particles . 23

3.10 The empty successors cache . 24

3.11 The effect of unnormalized sampling . 26

3.12 Unnormalized sampling without and with pseudo normalization 27

3.13 Ray bundles and slab caching . 31

3.14 Sampling at contour regions . 39

3.15 Surface enhancement techniques . 40

3.16 Adaptive sampling without opacity correction 41

4.1 Relevant cells for a single particle . 48

4.2 Ray vectors . 49

4.3 Performance for different slab depths . 56

v

List of Tables

4.1 Different sampling rates along z in our setup 46

4.2 Occupancy calculation for different visualization techniques 52

4.3 Memory consumption of the perspective grid’s particle map 53

4.4 Performance of different visualization techniques 55

4.5 Timings for empty space leaping . 57

4.6 Impact of the transfer function’s opacity on performance 58

4.7 Timings for grid construction . 59

vi

Listings

2.1 Launch of a CUDA kernel . 5

3.1 Barrier synchronization on shared memory usage 30

3.2 Slab-based sampling and compositing . 32

3.3 Normalized sampling . 37

4.1 Different CUDA kernels in our GPU program 46

4.2 Transformation of the particles’ positions to view space 47

4.3 Mapping from view space to the perspective grid 48

4.4 A simplified raycasting main loop . 50

4.5 Collaborative ray parameter computation . 54

4.6 Opacity correction . 54

4.7 Early ray termination with atomic operations 55

vii

Contents

1 Introduction 1

2 Background 2

2.1 GPU-Based Volume Raycasting . 2

2.2 Volume Raycasting with CUDA . 5

2.3 SPH Volume Raycasting . 7

2.3.1 The SPH Model . 7

2.3.2 Approaches to SPH Volume Raycasting 8

3 A Highly Parallel SPH Volume Raycasting Solution 9

3.1 The SPH Volume Raycasting Pipeline . 9

3.2 Sampling Rate Reduction on User Interaction 11

3.2.1 Reduction Method . 11

3.2.2 Stochastic Jittering . 12

3.3 Adaptive Step Size . 14

3.4 Perspective Access Structure . 16

3.4.1 Conception . 16

3.4.2 Grid Construction . 18

3.4.3 Empty Successors Cache . 22

3.4.4 Summary . 24

3.5 Normalization . 25

3.5.1 Unnormalized vs. Normalized Sampling 26

3.5.2 Pseudo Normalization . 27

3.6 Cached Sampling . 29

3.6.1 Ray Bundles . 29

3.6.2 Slab-Caching . 30

3.7 Shading . 33

3.7.1 Gradient-Based Shading . 33

3.7.2 Contour Shading . 37

3.8 Compositing . 41

CONTENTS

3.8.1 Opacity Correction . 41

3.8.2 Integration . 42

3.9 Summary . 44

4 Results 45

4.1 Implementation . 45

4.1.1 Framework Integration & Raycasting Setup 45

4.1.2 The CUDA Program . 46

4.1.3 Performance Optimization Techniques 53

4.1.4 Measured Performance . 55

4.2 Summary & Discussion . 60

5 Conclusion 63

5.1 Summary . 63

5.2 Limitations and Future Work . 65

Bibliography 70

Chapter 1

Introduction

Within the last decades, volume raycasting has become a well-known and well-established

technique in many fields of application, such as medical visualization, scientific visualization

or computer games. A lot of different rendering algorithms, performance optimizations and

techniques for several use cases have been presented. However, the application of volume

rendering techniques to the visualization of interactive SPH simulations is a relatively young

area of research.

In 2010, [FAW10] have proposed an efficient method to render very large SPH datasets that

have been computed and pre-processed offline, mostly running at even interactive framerates.

At the same time, [OKK10] have shown how an on-the-fly volume visualization for interactive

SPH simulations can benefit from caching mechanisms during the raycasting process, which

makes interactive framerates possible for small and medium particle sets in an interactive

SPH simulation setup. While the first approach uses a scattering method which resamples

the particle data onto a perspectively distorted grid, the second one uses a gathering approach

which collects the particles contributions along the rays.

Within this thesis, a novel raycasting approach for interactive SPH simulations is pre-

sented. The method is based on CUDA and combining a perspective access structure, as

proposed by [FAW10], with a ray-driven gathering approach, as used by [OKK10]. Using the

example of our CUDA program, performance optimization methods are shown. In addition,

several visualization techniques are evaluated, including gradient-based illumination and a

simple approach to contour shading.

In chapter 2, a brief overview of the necessary background for SPH volume raycasting with

CUDA will be given. Chapter 3 covers the conceptional part of this work. Different aspects

of the raycasting process are examined by using a model entitled the SPH Volume Raycasting

Pipeline. Within the following chapter 4, the basic structure of our CUDA program as well as

performance measurements will be presented and discussed. Finally, in chapter 5, a conclusion

is made. This includes the highlighting of the limitations of our approach and an outlook on

possible future work.

1

Chapter 2

Background

2.1 GPU-Based Volume Raycasting

In the wide field of visualization, many rendering techniques have evolved within the last

decades. The term volume rendering describes a range of different methods that can be

used to visualize the data of a 3D scalar field ([HKRs+06]). The most popular fields of

applications are the visualization of medical datasets, like for CT (computerized tomography)

or MRI (magnetic resonance imaging) data, geological data visualization and visualization

for different kinds of fluid simulation, usually summarized as computational fluid dynamics

(CFD).

An average volume rendering task can become much more time-consuming than the ren-

dering of polygonal meshes and is still a challenge for today’s high-performance graphics

hardware. Before such hardware was available, volume rendering was performed entirely on

the CPU, as described for example by [Lev90]. The basic idea is to sample the volume data

along rays that are originating in the virtual eyepoint and travelling through the image plane

into the scene. This process is well-known under the name raycasting. For each pixel of the

resulting image, one ray is cast through the scene. With the limited power of processors

those days, compared to today, it was not possible to achieve interactive framerates on a

desktop machine, even for small datasets. Hence, a lot of performance optimization methods

and variations of the original volume raycasting concept, such as the shear-warp algorithm

([LL94]), have been presented.

With the advent of programmable graphics hardware, a new generation of methods suit-

able for interactive volume visualization evolved. Besides texture-based approaches to volume

rendering ([EKE01, RGW+03, KW03]), GPU-based volume raycasting has become a popular

approach due to its high flexibility ([HKRs+06, MGS+01]). This was made possible through

a programmable fragment processing stage, where the GPU’s pixel processing (originally de-

signed for polygonal raster graphics) can be freely programmed. This was a first step towards

general purpose computation on the GPU, especially since dynamic looping and branching

2

2.1 GPU-Based Volume Raycasting 3

instructions have been made possible for fragment programs (also called fragment shaders)

running on the GPU ([SKB+06]). In contrast to texture based volume rendering, many

well-known acceleration methods from CPU raycasting can therefore be easily adapted for

GPU-based raycasting.

Several techniques exist for the conversion from the sampled scalar values along the rays

to pixel colors of the final image. Examples for such methods are maximum intensity projec-

tion (MIP), first local maximum and integration according to the emission-absorption model

([HKRs+06]). The last method is the most popular one for many fields of application, since

it delivers the most meaningful results. The basic idea is to assume that each point inside the

volume is on the one hand emitting light and on the other hand also absorbing an amount

of incident light. The volume rendering integral describes how to apply this lighting model

during the raycasting process:

I(D) = I0e
−

∫ s0
D κ(t)dt +

∫ s0

D
q(s)e−

∫ s
D κ(t)dtds (2.1)

Here, I(D) is the final intensity that reaches the eye. The first part of the equation, to the left

of the +, describes the lighting contribution of the scenes background I0 which is at each point

t attenuated by the corresponding absorption factor κ(t) while travelling through the volume

towards the eyepoint. The second part, to the right of the +, describes the same for light

emitted from any point s inside the volume: the emission q(s) is attenuated by the absorption

κ(t) of at each subsequent point t along the ray. This integral is usually approximated by

using a Riemann sum, with a discrete set of points along each ray to sample the emission

and absorption inside the volume. The process of computing the Riemann sum along a ray

by iteratively applying the emission and absorption contributions at each sampling point is

also called compositing ([HKRs+06]). Because of several reasons, it has become popular to

traverse the rays from the eyepoint through the image plane (front-to-back), instead of back-

to-front as described in equation 2.1. One reason is early ray termination, where the traversal

of each ray may terminate as soon as the accumulated absorption from front to back is near to

the maximal value. Since the result will change just minimally when such a point is reached,

the ray traversal can be finished before each point along the ray has been processed, which

can significantly speed up the raycasting application.

The emission and absorption values for each possible scalar value are usually stored as

a 1D or 2D texture, the so-called transfer function. During each step along the ray, the

scalar value at the current position is determined. The value is then mapped to emission and

absorption coefficients via lookups in the transfer function’s texture. This step is also called

classification. Finally, in the compositing step, the result is combined with the emission and

absorption that has already been accumulated along the ray. This happens by applying the

following equation

2.1 GPU-Based Volume Raycasting 4

Cnew = Cold + (1− αold)αcontribCcontrib, (2.2)

where Cnew denotes the new color, Cold the old color and Ccontrib the color contribution

that has been obtained via the transfer function. In the very most cases, this values will

be represented as RGB triplets. In the same manner, the accumulated absorption and the

absorption obtained from the transfer function are denoted as αold and αcontrib respectively.

The absorption for the next step αnew is then computed as

αnew = αold + (1− αold)αcontrib. (2.3)

This basic ideas are already sufficient to understand the fundamental concept. Within

the next section, we will address NVIDIA’s CUDA technology, which can be used as an

alternative to traditional fragment shader approaches ([SKB+06]) to implement GPU-based

volume raycasting.

2.2 Volume Raycasting with CUDA

With the advent of programmable graphics hardware, especially since GPU programs with

dynamic loop and branch instructions are possible, it has become more and more popular to

exploit the power of modern GPUs for other purposes than pure graphics programming. This

concept is usually referred to as General Purpose Computing on the GPU, or short GPGPU

([OLG+07]). With the release of the first CUDA (Compute Unified Device Architecture) SDK

in 2007, NVIDIA presented a hardware and software concept for GPGPU. CUDA-capable

GPUs provide a hardware interface for the CUDA API, which is based on C programming

with minimal extensions specific for GPU computing. Using CUDA for a highly parallel

task within an application makes it possible to solve this task in a fraction of the original

time which would be needed for a sequentially running CPU program. This is due to the

CUDA hardware architecture, which can process many thousand threads in parallel without

much overhead for thread scheduling ([KH10]). The GPU program which is executed for

all threads in parallel is called the kernel. The programmer will have to specify how many

threads should be launched, and how those threads are grouped into thread blocks. Each

thread block can accommodate a fixed number of threads at maximum. An example can be

seen in listing 2.1, where the CUDA kernel function myKernel(int x) is launched using the

operator <<<...>>>, one of CUDAs extensions to the C programming language ([NVI11]).

—

1 int x = 23;

2
3 // configure thread setup variables

4 dim3 threadsPerBlock (8, 8, 1);

5 dim3 blocks (12, 12, 1);

6
7 // launch the CUDA kernel , for all threads in parallel

8 myKernel <<<blocks , threadsPerBlock >>>(x);

Listing 2.1: Launch of a CUDA kernel.

Each block of threads can use a special barrier synchronization function syncthreads()

to synchronize all of its threads at a certain point within the kernel function. This is an

important feature which enables the threads to operate collaboratively on parts of the input

data. Besides the main graphics memory, which is in the context of CUDA referred to as the

global memory, there are also other kinds of memory within the CUDA model. One of those

is the shared memory, which is allocated per thread block. This special on-chip memory has

much less access latency than the global memory and is therefore well-suited for operations

that are performed collaboratively by all threads within a block. It can this way furthermore

reduce the amount of local memory needed by each thread, which may lead to more threads

running in parallel. Since local memory is a special subset of the global memory, it has the

same access latency. Besides the local memory, a fixed number of on-chip registers with very

5

2.2 Volume Raycasting with CUDA 6

low access latency is assigned to each thread. As the amount of possible per-thread registers

on the hardware is very limited, the CUDA compiler will usually decide to keep only the most

frequently accessed variables within a kernel in registers.

Since it provides a flexible programming model and promises high performance for parallel

tasks, CUDA has become popular for raycasting applications. It is especially an alternative

to the fragment shader approach, which is still connected to the traditional graphics pipeline,

originally intended to render polygonal data. [MHS08] and [MRH10] have tested CUDA

implementations for volume raycasting against the traditional approach based on fragment

programs. Of course, changing the API will not change the underlying hardware, therefore

the difference in performance can not be expected to be very huge. However, they find that

CUDA programs offer more chances to perform low-level optimizations by hand. This is

due to the flexibility of CUDA, where the programmer has more possibilites to configure the

execution on the hardware directly, e.g. by deciding over the number of threads per thread

block and by managing different types of memory. Of course, this additional freedom comes

at the cost of additional responsibility. In order to write an optimized CUDA program, an

in-depth understanding of the CUDA architecture is a prerequisite ([KH10]).

Within the next section, we will explain the SPH model and furthermore describe existing

approaches to SPH volume raycasting, with and without CUDA.

2.3 SPH Volume Raycasting

2.3.1 The SPH Model

In section 2.1, we have mentioned that one field of application for volume raycasting is com-

putational fluids dynamics (CFD). The Smoothed Particle Hydrodynamics (SPH) model can

be seen as a CFD method, although its origins are in astrophysical simulations ([Mon05]). It

is a so-called Lagrangian method, which means that no explicit grid is used to discretize the

values of the fluid within the simulation domain. Instead, the fluid is represented as a set of

particles that move with the fluid. For each particle, physical properties like mass, density or

the concentration of a substance within the fluid are stored and transported along with the

particle. If we want to visualize such properties, we have to be able to obtain the scalar value

of the property at a random point in space. Therefore, the question arises how the scalar field

can be evaluated, using the particle data. This is brings us to the core idea of the SPH model,

which is the application of a so-called smoothing kernel. The smoothing kernel is a function

W (d, h) : R2 → R that is used to determine the weight of each particle’s contribution to the

scalar value Q(x⃗) at point x⃗ by evaluating

Q(x⃗) =

∑
iQi · Vi ·W (∥x⃗− x⃗i∥ , h)∑

i Vi ·W (∥x⃗− x⃗i∥ , h)
, (2.4)

where the positions, scalar quantites and volume of the particles are denoted as x⃗i, Qi

and Vi respectively. As can be seen, the first parameter to the kernel function is the distance

of the corresponding particle to the point of evaluation. The second parameter is the parti-

cle’s smoothing length, which is constant within many applications. The smoothing length

describes the limited influence radius of the particle. Hence, all particles further away than h

will not contribute to the point of evaluation. An example for a kernel function is the poly6

kernel, which was used within our application throughout and is defined as

Wpoly6(d, h) =

315(h2−d2)3

64h9π
, if d ≤ h

0, else.
(2.5)

Usually, the kernel function is radially symmetric like the poly6 kernel, although other

approaches have been proposed ([YT10]). A lot of work has been done to optimize the

accuracy of SPH models as well as the performance of CPU-based SPH simulations ([Her94,

CM99, APKG07, BK02]). With the appeareance of programmable graphics hardware, it has

become possible to perform the simulation entirely on the GPU in a convenient way, enabling

interactive SPH simulations by using the standard graphics pipeline ([ZSP08]) or CUDA

([OKK10]). Note that SPH is very well-suited for a parallelization via CUDA, since a lot of

computations have to be performed particle-wise during each time step of the simulation.

7

2.3.2 Approaches to SPH Volume Raycasting 8

2.3.2 Approaches to SPH Volume Raycasting

To visualize the scalar quantites of an SPH simulation, volume rendering techniques need to

be employed. In this context, two basic approaches to volume raycasting can be identified.

Scattering approaches ([SDG08, FAW10]) are resampling the particles scalar quantites onto a

grid. The scalar values inside the grid can then be visualized using standard volume raycasting

approaches, as used for e.g. medical datasets. In contrast, gathering approaches ([OKK10,

ZSP08]) evaluate the scalar field directly at each sampling point along the rays. In order

to be efficient, such approaches need a mechanism to obtain a subset of potentially relevant

particles. Therefore, in contrast to scattering approaches, spatial access stuctures like octrees

have to be employed.

A recent example of a scattering approach, using programmable fragment shaders, can be

found in [FAW10]. The key idea is to resample the scalar quantities of the particles onto a

perspective grid which discretizes the view frustum. This process involves a high amount of

memory consumption, since each sampling point along each ray is represented by a point inside

the perspective grid. Nevertheless, once the resampling step is finished, the actual raycasting

process is performed in a pretty straightforward way. Since the points of the grid are already

perspectively arranged to exactly match the samples along the rays, the raycasting procedure

boils down to the classification and compositing steps. To make the expensive resampling

process more efficient, they are organizing the particles inside an octree. This makes it possible

to obtain a subset of the whole particle set, which is useful to include only particles that are

potentially located inside the view frustum into the resampling process. Such an optimization

is especially necessary because they are visualizing non-interactive, precomputed data with

many millions of particles.

In contrast, [OKK10] have proposed a gathering solution for interactive SPH simulations,

based on CUDA. As a spatial access structure, they are using a data-parallel octree that

is built entirely on the GPU, following the proposal of [ZGHG11]. In their publication,

three different caching mechanisms are proposed in order to make the gathering process more

efficient. The node cache is the first caching mechanism and used to store the identifiers for

the currently relevant octree nodes in shared memory for a block of threads, representing a

bundle of rays. The second mechanism, called the influence cache, is realized by their octree

structure. Each node includes also particles that do not have their center within the node,

but are instead spreading into it from a neighboured one. This way, additional node fetches

during the sampling process can be avoided. Finally, the slab cache is proposed as a third

caching mechanism, which follows the proposal of [MRH10] for the raycasting of regular,

grid-based volume datasets.

Chapter 3

A Highly Parallel SPH Volume

Raycasting Solution

3.1 The SPH Volume Raycasting Pipeline

For our application, we have decided to use a gathering approach to SPH volume raycasting

(see section 2.3.2). Within this chapter we will discuss the conception of our raycaster and see

several reasons that are justifying such a decision. Using a gathering approach involves the

process of following rays through the image plane and collecting the particles contributions in

order to determine the values of the scalar field at each sampling point along each ray. The

scalar values are then mapped to emission and absorption coefficients by a transfer function.

Those coefficients are in turn used to evaluate the emission-absorption model along the ray.

From a conceptual point of view, this is already the description of the whole raycasting

process. However, if we want to implement this process in an interactive application under

real-time demands, a couple of problems needs to be solved.

Following the concept of the volume rendering pipeline shown in [HKRs+06], we can divide

the raycasting process into several stages to obtain a more specific SPH volume raycasting

pipeline (see figure 3.1) through which we are running each time we are generating a new

raycasting result. Each stage of the pipeline corresponds to a problem which can be solved

in various ways, basically independent from the rest of the pipeline.

At first, we have to set up the rays. We have to decide over the number of rays we want

to use as well as over the starting point of each individual ray. After this very first step, we

iterate through the following recurring stages of the SPH volume raycasting pipeline. During

the ray traversal stage, we move forward along the ray to the next sample position. This

can, for example, involve the skipping of emtpy space. The particle access stage describes

the localization of particles that might be relevant for the current sampling point, which is

made possible by a spatial access structure, like a uniform grid, for instance. During the

sampling stage, we compute the value of the scalar field which we want to visualize. This is

9

3.1 The SPH Volume Raycasting Pipeline 10

Figure 3.1: The SPH volume raycasting pipeline. The content of the green box shows the
actual pipeline which is executed a lot of times while following a ray through the scene.

achieved by computing the weighted sum of all relevant particles contributions. The following

classification stage maps the sampled scalar value to emission and absorption values, which

are, for example, represented as an RGB color and an alpha value. Finally, the compositing

stage applies those emission and absorption values for the current sample before we continue

with the ray traversal for the next one.

Within the following sections, we will be discussing all important features of our raycaster

at each stage of the SPH volume raycasting pipeline.

3.2 Sampling Rate Reduction on User Interaction

Because we are dealing with an interactive setup, allowing fluent user interaction is an

important aim of our application. For the raycaster, this means that we have to provide

methods to perform the raycasting process at different precision levels, since reducing the

sampling rate will boost the performance of our application, which might be necessary for

fluent user interaction. Within this section, we will present the methods we have applied to

achieve this.

3.2.1 Reduction Method

In order to raise the framerate of the raycasting application to a number which is suitable

for fluent user interaction, two basic ways of reducing the sampling rate can be identified.

On the one hand, we can reduce the image plane’s resolution. On the other hand, we can

reduce the number of sampling steps along each ray. Both methods can be found in common

volume rendering frameworks ([MSRMH09, KP+11]). In our application, we are always using

a combination of both. Since, following [FAW10], our choice for the sampling rate along the

rays is directly linked to the resolution of the image plane (see section 3.3), we always reduce

the number of sampling steps per ray if we choose to downscale the image plane for raycasting.

We are furthermore following the Interactive Speed -approach used in [KP+11], since we found

it to be the best working solution. The idea is to decrease the sampling rate on the image

plane and along the rays equally, until a desired speed of the raycasting application is reached.

In our application, the reduction is expressed by a scalar factor r ∈ R, r ∈ [1, rmax] which

is adjusted every frame after checking the current framerate. This happens according to the

following formulation

rnew =

min(rold + 0.25, rmax), if the camera moved

rold, else, if tlast < 0.25

1, else

(3.1)

, where tlast denotes the elapsed time since the last camera movement, rnew the reduction

factor which will be used to render the next image and rold the one used for the last image

11

3.2.2 Stochastic Jittering 12

respectively. If the raycaster needed more time to generate the last image than what would

be allowed according to our desired reference frame rate, e.g. 12 frames per second, we adjust

the coarseness factor by 0.25. We found this to be a useful value in our particular setup, but

of course this adjustment value may vary from case to case - the choice is a balance between

a fast reaction on user interaction, leading to a higher adjustment value, and the avoidance of

a fast over-reaction, limiting that adjustment value. Besides this adjustment, which follows

the Interactive Speed -approach of [KP+11], we add a cooldown period of a quarter-second

in which the sampling rate reduction is kept before returning to 100% quality (see equation

3.1). This additional feature is useful because, in a typical case, the user will often move the

camera, release the mouse button and continue with the next camera adjustment. If the user

wants, for example, to see a special feature of the scene from the opposite direction, he will

probably rotate the camera by 180 degrees and then release the mouse button. Then, using

another button, he will zoom in, in order to see the feature of interest. Between those two

phases of interaction, an instant slowdown due to the direct return to 100% quality rendering

will be found disturbing, which is the reason for using the cooldown period.

Figure 3.2: The left image was rendered with 100% quality. The right image was rendered with
a reduction factor of 4, applied to the image plane resolution as well as the number of samples
along the rays. The low-resolution rendering result is interpolated when being displayed inside the
viewport, using bilinear interpolation. The undersampling along the ray direction is causing image
noise instead of wood-grain artifacts due to stochastic jittering (see 3.2.2).

3.2.2 Stochastic Jittering

We have also implemented the concept of stochastic jittering, which is not only useful when

we are using a lowered sampling rate along the rays, as shown in figure 3.2. It can also help

to hide artifacts caused by an undersampling of the transfer function, which might occur

3.2.2 Stochastic Jittering 13

even if we are performing a high-resolution sampling of the scalar field. Thinking about the

sampling of the transfer function, we find that the sampling rate we need for a satisfying

result is independent from the sampling rate we need to sample the scalar field. This problem

has already been described in [HKRs+06]. A good solution is to use pre-integrated transfer

functions as proposed by [EKE01]. The main idea of the approach is to use a pre-computed

high-quality sampling of the transfer function, assuming a linear progression between two sub-

sequent sampled values. However, in our application, we are not really running into problems

with possible classification artifacts. This is due to the fact that the transfer function, and

the scalar field as well, will usually not contain very high frequencies. The only case where

such a situation will certainly occur is when we are performing an unnormalized sampling,

which introduces high frequencies into the sampled scalar field. This topic will be addressed

in section 3.5. A resulting image from our application using unnormalized sampling with

stochastic jittering is shown in figure 3.3.

Figure 3.3: Transfer Function Undersampling and Stochastic Jittering. In the bottom, the
transfer function is depicted. The left image shows a regular rendering without stochastic jittering,
revealing the typical wood-grain artifacts, caused by an undersampling of the high-frequency
emission and absorption values when using an unnormalized sampling (see section 3.5). The right
image shows the result of a rendering with the same number of samples and stochastic jittering.

3.3 Adaptive Step Size

Instead of a uniform sampling rate, we are using an adaptive sampling mechanism as

proposed by [FAW10]. The number of samples per ray m ∈ N is computed by taking the

image plane resolution in y-direction (resy, which is usually lower than the resolution in

x-direction) as well as the vertical opening angle (fovy) of the view frustum into account:

m =
ln

(
f
n

)
σ

(3.2)

, where f denotes the distance of the far clipping plane from the viewer, n the distance of the

near clipping plane respectively and σ denotes the size of a single pixel on the image plane at

a distance of 1, with

σ = 2 ·
tan(

fovy
2)

resy
(3.3)

, as already derived by [FAW10]. If the reader is further interested in the computation of σ,

we would like to redirect to section 3.4, especially figure 3.7, where the computation of the

cell size on the image plane is performed analogous. The resulting value of m is then adjusted

by an additional factor λ, which scales m with respect to the frustum boundaries, where the

z-axis aligned sampling along the rays will lead to an increasing stepsize compared to rays at

the center of the frustum (see [FAW10]):

λ =

√(resx · σ
2

)2
+
(resy · σ

2

)2
+ 1. (3.4)

It is easy to see in equation 3.2 that our number of samples per ray is linearly dependent on

the resolution of our viewport. As also can be seen in the equation, it is especially crucial for

the number of sampling steps in this approach how close we choose our near and far clipping

plane. The opening angle of the camera is another factor. The example results shown by

[FAW10] are generated using a wide opening angle and far and near clipping distances with

a small ratio. This enables them to use a number of sampling steps along the rays which

equals almost the resolution in x and y. In order to implement the adaptive stepping, we

14

3.3 Adaptive Step Size 15

need a function which maps each step to the corresponding point along the ray. Following

[FAW10], we are defining a mapping between the index of the sample point, here called the

Ray Coordinate ⌊u⌋, to the corresponding distance along the ray t and vice versa. Using the

number of steps m which was derived above, the relation between t ∈ R and u ∈ R is defined

as:

t = n ·
(
f

n

) u
m

(3.5)

This equation can, obviously, directly be used to compute t for a given u. To receive an

equation which describes the inverse mapping, we first solve for u:

t = n ·
(
f

n

) u
m

⇔ t

n
=

(
f

n

) u
m

⇔ u

m
=

ln
(
t
n

)
ln
(
f
n

) ⇔ u = m ·
ln

(
t
n

)
ln

(
f
n

) (3.6)

Then, since ⌊u⌋ is an integer coordinate, we still have to compute the floor to receive the final

result:

⌊u⌋ =

m ·
ln

(
t
n

)
ln

(
f
n

)
 (3.7)

Since we are using a different stepsize for each ray segment, the weight of those segments

during the compositing step should not be equal. Using the standard compositing way as for

a uniform stepsize would lead to a change in opacity if we move our virtual eyepoint closer

towards the volume or farther away from it: due to the adaptive sampling rate there will be

more or less steps which sample the scalar field inside the volume, depending on the distance

to the eyepoint. We will show how to deal with this problem in section 3.8.

3.4 Perspective Access Structure

Since it would be incredibly inefficient to walk along a ray and consider all particles at

each sampling point, we need a spatial access structure to limit the amount of particles taken

into account during the sampling to a compact set of particles close to the current sampling

point. This can be achieved by various access structures. An example is the data-parallel

Octree used by [OKK10], mainly following the proposal of [ZGHG11], which can be efficiently

constructed in parallel by computing the relevant cells for each particle on every frame. As

already noted by [Gre10], the size of the simulation domain has a direct impact on the size of

every data structure which is aiming to discretize this domain, like a uniform grid. [IABT11]

are presenting a method to deal with infinite domains, at the cost of potential hash collisions.

The scattering method proposed by [FAW10], finally, uses a view-aligned perspective grid of

fixed size.

3.4.1 Conception

Within this work, we are proposing a novel spatial access structure which is used to access the

particle set in an efficient way during the sampling process. In contrast to existing gathering

approaches, we are using a perspective grid which discretizes our view frustum (see figure 3.4).

The basic structure of the grid is following the main idea of [FAW10], which is to construct a

perspective grid in view space with the same sampling rate along x, y and z. This means that

our number of cells along the ray direction, which corresponds to the direction of the z-axis in

view space, is computed by taking the resolution of the image plane into account. In contrast

to [FAW10], however, we are using a much lower resolution. This is due to the fact that we

do not want to scatter the particle values directly onto our grid, instead our aim is to store

references to all relevant particles for each cell of the grid, like we also would for a uniform

grid or the finest level of an octree. As already implied, this approach has the advantage that

we do not have to care for the size of our simulation domain, because we are discretizing our

view frustum instead.

Still, the major aim of this approach is to build an access structure which can easily be

used to obtain a candidate subset of the whole particle set as potentially relevant particles

for a given sampling point along the ray. The traversal of such a view-aligned structure

16

3.4.1 Conception 17

Figure 3.4: A simplified example of our perspective grid in view space. Note how the cells are
aligned to equally sized pixel tiles on the image plane, as well as to the paths of the rays through
those pixels.

is pretty straightforward, because the cell search in x and y direction has to be performed

only once, while the z-index of the current cell is just depending on the current value of the

ray parameter. This is an advantage over octrees, because we do not have to perform any

ray-cell intersection computations. Our cell structure is subdividing the image plane into

equally sized tiles, so we can assume that each cell is traversed by the same number of rays,

for example 16× 16. This can be advantageous when performing the raycasting on a highly

parallel computing device, as we will see in section 3.6.

Furthermore, we can easily handle an adaptive sampling rate along the rays. Using the

same adaptive sampling mechanism for cell size and sampling stepsize, we can ensure that

each cell contains a fixed number of sampling steps along z, which is just the relation between

the sampling resolution and the grid resolution, expressed through the ratio between the size

of a pixel σ (see section 3.3) and the size of a cell s ∈ R, both measured on the image plane.

In our application, for instance, we are preferring a relation of 1 : 16, which means that

each grid cell contains 16 adaptive steps along the ray. Of course, this whole concept can

also be used with a fixed sampling rate, in that case we will just have to use a uniform cell

size in z-direction. Figure 3.5 shows the two possibilities. Nevertheless, we are preferring an

adaptive sampling along the rays, as described in section 3.3, so we are also sticking to the

adaptive cell size along z.

Since we want the number of sampling steps in each cell to be constant, we have to adjust

the original number of steps along the ray m (see section 3.3) when using our perspective

grid. The final value of the number of steps, madjusted, can then be obtained by computing

the next number which is divisible by the number of samples per cell
(
s
σ

)
:

3.4.2 Grid Construction 18

y

z

y

z

Figure 3.5: Perspective grids. The left image shows a perspective grid with a uniform cellsize
along the z-axis, which is used together with a uniform stepsize along the rays. The right image
shows a perspective grid like ours that has an an adaptive cell size along the z-axis, used with an
adaptive stepsize along the rays. Both grids have the special property that each cell contains a
fixed number of sampling points (in this example: 4).

madjusted =
(s

σ

)⌈
m(
s
σ

)⌉ . (3.8)

The number of cells along z cellsz is then defined as

cellsz =
madjusted(

s
σ

) . (3.9)

As already implied, the special properties of our access structure, which is aligned with

the rays inside the view frustum on the one hand and the sampling points along the rays on

the other hand, are very well-suited for a fast and highly parallel raycasting implementation.

We will discuss this application of our perspective grid in section 3.6. In the rest of this

section, we will now cover the process of grid construction.

3.4.2 Grid Construction

In our approach, as usual for grid-based methods (see [Gre10]), an identifier is assigned to each

cell of the grid. For a grid of Nx×Ny×Nz cells and a cell with the 3D grid coordinate c, this

value is just the linear index of the cell in memory, computed the following straightforward

way:

IDX(c) = cz ·Nx ·Ny + cy ·Nx + cx (3.10)

In the first step of grid construction, for each particle, we need to find all cells to which

3.4.2 Grid Construction 19

the particle is contributing and store the indices of those cells. It is also possible to store, for

each particle, just the single cell it is located in, using the particles center (see [IABT11]).

This is a useful approach for grids that are used for the actual SPH simulation, since such a

simulation is particle-driven, i.e. each particle can check a fixed number of cells (e.g. 27) to

obtain its neighbourhood. However, in our case, this shifts workload from the grid constuction

to the critical point of cell traversal during the raycasting, which we want to avoid since we

may not evaluate too many irrelevant particles during the sampling. Instead, we are following

[OKK10] and computing all relevant cells of each particle during the grid construction for fast

access during the cell traversal. A common way to achive this for uniform grids or octrees is

to allocate a fixed number of slots in memory for each particle, since, for uniform cells, we can

assume that each particle can just contribute to a fixed number of nmax ∈ N cells at maximum.

Usually ([Gre10, OKK10, IABT11]) the cell size is chosen to be equal to the particle diameter.

This way a particle can contribute to eight cells at maxium, i.e. nmax = 8 (see figure 3.6).

For a bigger cell size, a particle might still contribute to eight cells at maximum, since it

might still spread across the cell’s border into the next cell in each dimension if it is closer

to the cell’s border than its radius, so eight cells is always the minimal value of nmax. For a

smaller cell size, we can compute nmax by finding the smallest integer number of cells that

is able to enclose the particle in each dimension. Because the particle might still reach into

a neighboured cell, as already mentioned, we have to add one to this value. The result has

then to be taken by the power of three to account for all dimensions. Since we are assuming

cubical cells, we can divide the particles diameter by the cell size and round up, which equals

the number of cells that is able to enclose the particle in any of the three dimensions. With

a cell size of s and a particle diameter h ∈ R, this means that the maximum number of cells

nmax(s, h) : R2 → N is computed according to the following equation:

nmax(s, h) =

(⌈
h

s

⌉
+ 1

)3

. (3.11)

After allocating the memory that is potentially needed to store all particle-cell connections,

the relevant cells are determined in parallel. Each thread computes the relevant cells for a

single particle and writes the result to a section of n ≤ nmax entries in the previously allocated

memory, corresponding to the particle’s relevant cells. For slots that remain unused, because

the particle is contributing to less than nmax cells, a special index INVALID CELL INDEX is

written.

In our approach, however, it is a little bit more difficult to determine n than for a uniform

grid. Since the size of a cell varies among the view frustum, we have to consider the finest

possible cell size, which is the subset of cells with a zero z-index, located directly in front of

the near plane, as can also be seen in figure 3.5. This cell size depends on the size of a cell on

the image plane. In our application, we have chosen a size on the image plane of 16×16 pixels

(using a resolution of 512 × 512 pixels) for those cells, which leads to 32 cells in x-direction

3.4.2 Grid Construction 20

s1

s1

s
2
 < h < 2s

2
s1 = h

s2

s2

Figure 3.6: Uniform grid cells (2D situation): in the left image, the cell size equals the particle
diameter. It is easy to see that each particle can contribute to two cells at maximum in each
dimension. In the right image, the size of a single cell is smaller than the particles diameter, but
the size of two cells is still bigger. One can see that a particle might contribute to three cells at
maximum in each dimension.

and 32 cells in y respectively. Knowing that the sampling rate along z is the same as along

x and y, and knowing that the cells just get larger while moving along z inside the frustum,

we can assume a uniform cell size with the size of a cell on the image plane in view space to

compute nmax. This size is depending on distance of the near clipping plane n as well as on

the vertical opening angle fovy, as can also be seen in figure 3.7.

y

zsplane

n

fovy

s

Figure 3.7: Cell size computation in view space. Parameters that are important to compute
the size of the image plane in view space are the distance from the virtual eyepoint to the near
clipping plane n and the vertical opening angle of the frustum fovy.

3.4.2 Grid Construction 21

Looking at the right triangle depicted in figure 3.7, we can see that half of the image planes

size splane ∈ R equals the length of the rightmost side of the triangle in the image. The upper

side of the triangle has a length of n, so we can compute the size of half of the image plane

by using the product of n with the tangent of half of fovy:

splane
2

= n · tan
(
fovy
2

)
(3.12)

If we multiply the result by two, we obtain the size of the image plane splane. After dividing

this by the number of cells in y, we will finally get what we we are looking for, the size s of a

cell on the image plane:

s = n ·

2 · tan
(
fovy
2

)
cellsy

 (3.13)

Note that this corresponds exactly to the computation of the pixel size in the approach of

[FAW10], with the sole difference that we use cellsy instead of the vertical viewport resolu-

tion resy. In our example setup, the near plane is located 40 units away from the viewer,

the vertical opening angle equals 60 degrees. According to the above equation, s equals to

approximately 1.44 units for those parameters. Having a global particle radius of 1 unit in

our simulation, we find that a particle might contribute to more than eight cells, since our

cell size is smaller than the particle diameter. Nevertheless, the size of two cells is still bigger

than the particle diameter, so that a particle might cover at maximum three cells in each

dimension. This leads us to the conclusion that nmax = (2 + 1)3 = 27, i.e. a particle might

contribute to 27 cells at maximum.

Compared to the eight relevant cells that are usually used with uniform grids, this is

clearly a drawback of our approach, especially because most of the 27 slots are not really

used, since the cell radius gets much bigger than the original 1,44 units while moving along

the z-axis inside the frustum (see figure 3.5). Besides that, we also have to perform more

checks, which are in addition also using a more complex geometry, since, in view space, each

cell is represented by a small frustum, instead of a simple cube.

At this point, one might wonder if we are consuming too much memory when allocating

the slots for each particles relevant cells, with nmax = 27 slots for each particle. Using

Nparticles particles and assuming that the cells indices will be stored as 4 byte integer values,

we can compute the space which is necessary to store all relevant cells for each particle by

computing nmax · Nparticles · 4. For an example case nmax = 27 and Nparticles = 524, 288 we

will need to reserve 27× 524, 288× 4 byte = 54 MiB. As can be seen, for our choice of n=27,

the memory consumption stays moderate, even for an amount of particles that is relatively

large for an interactive SPH setup, so we are accepting the memory consumption at this point

and referring to a more detailed analysis in section 4.1.

3.4.3 Empty Successors Cache 22

In order to be able to use the perspective grid, the mapping from particles to cell indices

which we have constructed needs to be reversed, as described by [Gre10]. In order to do so,

we need another array in memory that is used along with the array of relevant cells. This

doubles the memory consumption which has been described above, but, as already implied,

this is no problem for our interactive medium-scale setup. The second array holds the particle

indices, i.e. each particle writes its index in each of its nmax slots in that array. After the

parallel computation of relevant cells, this leads to a map consisting of two arrays, as depicted

in figure 3.8.

Figure 3.8: A map from particles to relevant cells, represented by two arrays. If a particle is
contributing to less than n (here: n = 4) cells, a special identifier INVALID CELL INDEX is written
(here abbreviated as INV).

In order to reverse the mapping to obtain a mapping from cells to particles, we need to

sort all entries of the map by the content of the cell index array. This can, for example, be

efficiently done by using a radix sort. This widely-used sort method can be executed with

several threads running in parallel, each processing a section of the input array, which can lead

to a significant speedup compared to non-parallel sorting algorithms, as shown by [SHZO07].

Once sorted, we already have the basic access structure we are looking for. However, we

do not know at this point at which position in the array the list of relevant particles for a

certain cell starts and where it ends. Following [Gre10], we are computing those array indices

for each cell and storing them in two additional arrays, called cell start and cell end (see figure

3.9). Each of those arrays has the same size as the number of cells. Assuming 4 byte indices

again, this leads to 252 KiB per array for our example setup of 32 x 32 x 63 cells, so it is

easy to see that the memory consumption caused by this additional structure is neglectable.

In order to obtain the indices, we are using as many threads as there are entries in the map,

i.e. Nparticles × nmax. Each thread checks if the corresponding map entry has a succeeding

entry with a different cell index. If so, the thread has detected the last particles index for the

corresponding cell, as well as the first particle index for the succeeding entries cell. In this

case, the thread writes those two values to the cell start and cell end arrays.

3.4.3 Empty Successors Cache

During the ray traversal in our interactive raycasting setup, we will encounter many samples

with a zero value. This is due to the fact that the distribution of particles inside the simulation

domain and thus also inside our view frustum will be, in contrast to other setups like for the

large non-interactive datasets used by [FAW10], relatively sparse. Therefore, one might think

3.4.3 Empty Successors Cache 23

Figure 3.9: A map from cells to relevant particles. The start index and end index of each cells
section inside the map are stored in two separate arrays, one for cells start index and one for the
cells end index. Here, the cell start array is shown. Each array position correspond to a cell with
the same index. As can be seen, cell 7 starts at index 8, cell 8 at 10 and cell 14 at 11, while cells
8-13 are containing no particles, so their start and end indices are set to the special identifier INV.

about approaches to skip empty areas during the sampling. This will significantly reduce the

number of samples taken into account and therefore improve the performance of the raycasting

application. This idea is usually refered to as empty space skipping or empty space leaping,

and has become a well-known concept in the area of volume rendering (see [HKRs+06, Lev90,

OKK10, MGS+01]). Clearly, skipping empty regions requires prior knowledge about those

regions. In our case, this means that we have to store information about empty regions in

our access structure, which is our perspective grid. This is where another useful property of

the grid comes into play. We build our grid aligned to our rays through the image plane.

Therefore we know that, during the ray traversal, when the information about empty space is

needed, the skipping of empty space will always happen along the positive z-axis of our grid.

With this in mind, we can build a helper structure which stores the number of coherent cells

that can be skipped in z-direction zempty ∈ R, including the cell itself, for each empty cell. We

will call this structure the empty successors cache in the following. The construction of this

cache can be done in parallel for each cell after the other grid construction steps, when we

can already determine which cells are empty by checking against INVALID CELL INDEX in the

cell’s entry of the cell start array. Each cell that is empty initializes its value of zempty with 1.

Then, the next cell in z direction is checked. If this cell is empty, zempty is incremented by one.

This step is repeated as long as an empty cell was found during the last step. If a non-empty

cell is found, the thread writes the resulting value of zempty to the empty successors cache and

terminates. For non-empty cells, the value zempty in the empty successor cache will be set to

zero (see figure 3.10).

This structure can then be used during the raycasting process to skip large empty regions

within a single step. If we, for example, have a situation where all cells in z-direction are

empty for a certain x and y coordinate, we will realize this directly during raycasting when

checking the empty successors cache for the first cell. The entry will then equal Nz, so we

3.4.4 Summary 24

y

z
1

0

4

1

0

3

2

1

2

1

1

0

Figure 3.10: The empty successors cache. For each empty cell, the number of coherent empty
cells in z-direction, including the cell itself, is written. For non-empty cells, zero is stored.

skip Nz cells in a single step and realize that we are already finished with the whole grid

traversal.

3.4.4 Summary

So far, we have discussed all steps that are necessary to construct a perspective grid which

contains references to all relevant particles for each cell. The perspective grid is aligned to

the view frustum, which can be very useful during the sampling process. The cellsize is

furthermore adaptive, analogous to the increasing sampling stepsize along the rays, as shown

in section 3.3. This leads to the special property that each cell contains a fixed number of

samples. Finally, storing the number of succeeding empty cells in z-direction for each cell

enables us to perform empty space skipping. Within section 3.6.2, we will see how those

major advantages of the perspective grid can be exploited during the raycasting process.

3.5 Normalization

Following the SPH model, we are obtaining the value of the scalar field at a given point

by computing a weighted sum of all particles’ contributions. In order to preserve constant

functions in our final result, we should then divide this weighted sum by the sum of all weights

([BK02]), according to the following equation:

Q(x⃗) =

∑
iQi · Vi ·W (∥x⃗− x⃗i∥ , r)∑

i Vi ·W (∥x⃗− x⃗i∥ , r)
(3.14)

This division is called normalization. It’s one advantage of gathering approaches over

scattering approaches that we are able to perform such a normalization during our main

sampling pass. In the approach of [FAW10], for example, a normalization is not possible

because the scalar field is directly reconstructed from the scattered values which are just the

sum of each particles weighted contribution:

Q(x⃗) =
∑
i

Qi · Vi ·W (∥x⃗− x⃗i∥ , r) (3.15)

Obviously, one cannot reconstruct the weights out of the result of this computation af-

terwards. The only imaginable way to provide a normalized result would be to use a second

scattering pass in which only the weights of the particles (not multiplied by their scalar val-

ues) are resampled onto the grid. Since the resampling, as already mentioned by [FAW10],

is much more time-consuming than the raycasting through the pre-sampled perspective grid,

this is not a good option because it causes an immoderate performance decrease.

In our approach, we can easily gather the sum of weights along with the contributions

and then apply normalization after all contributions have been summed. Of course, this also

causes a decrease of performance, because our CUDA program will need additional memory

to save the sum of weights along with the contribution for each sample point. This additional

memory potentially decreases the number of threads that can execute in parallel and therefore

also performance. However, the performance drop is rather small and still acceptable. With

this possibility in mind, we will compare the use of unnormalized and normalized sampling

for our application within the next section.

25

3.5.1 Unnormalized vs. Normalized Sampling 26

3.5.1 Unnormalized vs. Normalized Sampling

Raycasting with normalized sampling results in vastly different images, which represent the

SPH model much more precisely. This is due to the fact that, in the case of a simple unnor-

malized sampling, we are always running through the lower spectrum of our scalar field when

intersecting a particle with our ray. When hitting the surface of the particle set, this leads

to our transfer function being applied to that lower part of the spectrum for a few samples.

Note that, in the extreme case of a border particle with the maximum scalar value, being

intersected through its center by a ray, we will encounter all possible scalar values from zero

to the maximum value on the rays way from the particles border to its center. Hence, all

possible different emission and absorption values inside the transfer function will need to be

applied. Figure 3.11 illustrates this situation. In addition to the fact that this is unwanted in

most cases, the danger of visibly undersampling the transfer function this way is much higher

than for normalized sampling. Figure 3.3 shows the result of such an undersampling.

Normalized:

Unnormalized:

Transfer	Function:

0 smax

s

tf(s)

s

tf(s)

Figure 3.11: The effect of unnormalized sampling. In the lower part of the figure, two color
bands show the scalar values (s) that are gathered along the ray using an unnormalized sampling
of a particle without any neighbours, as well as the corresponding emission values tf(s) that are
obtained from an example transfer function. In the upper part of the figure, the same information
is shown for normalized sampling. The gradient inside the particle shows the particles weight
according to its kernel function, with white indicating the highest weight.

Still, if we use a different color for the lower spectrum of the scalar values than for the rest,

we can this way visualize the surface of the fluid without explicitely employing any surface

shading technique. The result somehow reminds of a lighted surface, as can be seen in figure

3.5.2 Pseudo Normalization 27

3.12. This feature can, under certain circumstances, give us more visual information with less

effort, since we are able to recognize depth relations much better, compared to unshaded and

normalized rendering.

Figure 3.12: Unnormalized sampling without (left) and with (center) pseudo normalization (see
section 3.5.2). At the bottom, the transfer function is depicted. A pseudo normalization resembles
much more the correct, normalized visualization of the several concentration levels, shown on the
right. Note how the application of the lower spectrum of the transfer function in the two leftmost
figures, although wrong, enhances surface visibility.

3.5.2 Pseudo Normalization

In addition to the “surface highlighting“-effect which occurs when using an unnormalized

sampling (see 3.5.1), we will also obtain wrong values inside the fluid, because the lack of any

normalization means that the division of each sampled value by the sum of kernel weights is

not applied. Usually, sampled values will be too large because of that. This effect is visible

in figure 3.12, where the red area is much larger for the unnormalized rendering.

An approximate solution to this, in the following called Pseudo Normalization, is very

easy to realize and can also be applied in scattering solutions like [FAW10]. All we have

to do is to divide all sampled values by a representative maximum sum of weights wmax

which assumes a fully occupied particle neighbourhood of nneighbours ∈ N neighbours. Inside

dense regions of the volume this will probably be a good solution, since we can assume

the number of neighbours to be approximately constant inside incompressible fluids. All

we need is an assumption about the structure of the densely packed particles. As a pure

educated guess, which we derived from looking at the debug rendering of particles as spheres

inside our application, we set the assumed number of neighboured particles inside the fluid

to nneighbours = 12. For a better foundation of nneighbours, this topic might need further

investigation. Also, we have assumed that the distance to each of those neighbours dinner ∈ R
equals half of the particle’s support radius h. However, we found that this provided us with

3.5.2 Pseudo Normalization 28

satisfying results, as shown in figure 3.12. The representative sum of weights wmax is then

computed as

wmax = nneighbours · (vcnst ·W (dinner, rcnst)). (3.16)

Note that this formulation uses the additional assumption of a fixed particle volume vcnst and

a fixed smoothing length rcnst. Nevertheless, this is always the case in our particular setup.

Because it is faster and has the advantage over unshaded normalized raycasting that we

can easily recognize surfaces, we decided to keep pseudo-normalized as an optional method

in our raycaster. Nevertheless, our first choice is still the correct way of visualizing the

scalar field, which includes normalized sampling. In section 3.7, we will explain how we can

solve the problem of missing visual information about surfaces by employing surface shading

techniques.

3.6 Cached Sampling

When implementing our gathering approach to SPH volume raycasting, we are reliant on

programmable high performance graphics hardware in order to achieve interactive framerates.

We can benefit especially from the ability of such hardware to execute many thousands

of threads in parallel. In order to exploit this parallelism for volume raycasting, a lot of

optimization mechanisms have been proposed ([MGS+01, MRH10, OKK10, MHS08]). For

the special case of SPH volume raycasting, the approach of [OKK10] has shown how a highly

parallel raycasting program can benefit from three different caching mechanisms. All of those

three mechanisms, the node cache, the influence cache and the slab cache, are already implied

by our perspective grid (see section 3.4). Within this section, we will show how the special

properties of this grid can be exploited during the sampling process.

3.6.1 Ray Bundles

Since our perspective access structure is view-aligned, we can assume that a ray’s position in

x- and y-direction inside the perspective grid will never change during the ray traversal. Fur-

thermore, the perspective grid has the special property that the cell structure is subdividing

the image plane into equally sized tiles of Ntile×Ntile pixels (see section 3.4.1). This way, we

are able to share information about the grid traversal during the raycasting process between

bundles of up to Ntile×Ntile rays. In our particular setup, with a grid resolution that leads to

cells with a size of 16×16 pixels on the image plane, this corresponded at the same time to the

organization of CUDA threads in each block: each block manages 16×16 = 256 threads. Note

that this is not an unusal number of threads per block but instead recommended for several

CUDA applications [KH10]. What makes it attractive to organize threads this way is that

they can access a shared low-latency on-chip memory which is allocated block-wise, simply

called shared memory. Shifting shared resources to shared memory can reduce the amount of

local memory and registers needed by each thread. This lowered memory consumption can,

under certain circumstances, lead to more threads running in parallel ([KH10]). In our case,

the information that can be shared between threads in the same bundle is everything related

to the traversal of our perspective grid, in particular

29

3.6.2 Slab-Caching 30

• the 3D index c of the current cell,

• the linear index IDX(c) of the current cell,

• the number of empty cells in z-direction zempty that can be skipped,

• the integer ray coordinate ⌊u⌋ (see 3.3) and finally

• the ray parameter t, corresponding to the current ray coordinate.

All of those points are caused by the fact that all rays of a bundle are always sampling

positions within the same cell. For x- and y-direction, we have identified this as a useful

property of our perspective grid. For the z-direction, this is due to our adaptive sampling

mechanism, following [FAW10], where all rays perform the same sampling in view space.

Before writing to the shared memory, we have to use a synchronization barrier (which is

already provided by CUDA) to ensure that all threads have executed the program until this

point. The first thread of the block is then used to compute the shared values and to write

them to shared memory. After such a write transaction, another synchronization is necessary

before all threads may continue their work. A simplified example of such a process is shown

in listing 3.1:

—

1 //... do something , using a shared memory variable s_rayCoord

2 synchronizeThreads ();

3 // first thread modifies s_rayCoord

4 if (isLeader){

5 s_rayCoord = s_rayCoord + 1;

6 }

7 synchronizeThreads ();

8 //... continue , using the new value of s_rayCoord

Listing 3.1: Barrier synchronization on shared memory usage.

Note that keeping the grid traversal information in shared memory corresponds to the

node cache proposed by [OKK10]. In our setup, this method enables the hardware to use less

memory for each thread, and therefore to accommodate more threads at the same time.

3.6.2 Slab-Caching

With the concept of a slab cache, which stores a fixed number of samples along the ray,

[OKK10] are following the proposal of [MRH10]. However, in their case of SPH volume

rendering, the slab cache is not only utilized for gradient computation, like in the case of

[MRH10], but also to reduce the amount of global memory read operations. As described in

[KH10], such operations can become a bottleneck for the performance of the GPU programm,

since they have a long latency. The solution mentioned by [KH10], which is to transfer shared

information from global memory to shared memory, is adapted by [OKK10] in form of the

3.6.2 Slab-Caching 31

Ntile

Ntile Dslab

Figure 3.13: Ray bundles and slab caching. Each bundle of ray consists of Ntile × Ntile rays
(here: 2 × 2). Along the rays, a fixed number of Dslab (here: 2) samples is processed together
during each gathering step.

slab cache. In the case of [OKK10] and in our case as well, the major part of global memory

traffic consists of particle read operations. In an approach without any slab cache, as assumed

in the previous section, the positions and scalar values of all particles of the current cell have

to be fetched from global memory at each sampling point. But if we can manage to fetch

the particles’ values only once for three succeeding sampling points, we will have reduced

the global memory traffic for this task to 1
3 . Our cell structure is ideally suited for such

an approach because we can always assume that only one cell is relevant for a cached ray

segment, in contrast to the octree used by [OKK10], and that furthermore the number of

samples per cell is constant (see section 3.4.1). With this constant number of Ntile sampling

points per cell, which should be a power of two, we can then define the size of the slab cache

as a fixed number Dslab ∈ N with

Dslab =
Ntile

2k
(3.17)

, where k ∈ N is a constant out of {0, ..., log2(Ntile)}. As an example, with Ntile = 16 we

could decide to use a cache for each ray that stores the sampled values for 16, 8, 4, 2 or 1

point(s). Dslab can also be referred to as the slab depth ([OKK10, MRH10]). An example

of a slab cache with a slab depth of Dslab = 2 is depicted in figure. The size of the cache

will be a tradeoff between the benefit of reducing global memory access and the additional

local memory and register consumption of each thread. Note that we also have to store

all additional information that is gathered during the sampling for each sampling point in

the cache, like the accumulated sum of weights (see section 3.5) or the gradient vector (see

section 3.7.1). Because of this, it is good to allow a flexible size of the slab cache, as described

by equation 3.17. We will discuss the tradeoff between memory access speed and memory

3.6.2 Slab-Caching 32

consumption more detailed in section 4.1.4 and give recommendations concerning a good

choice for Dslab.

Having performed the sampling for all sampling points in the cache, we can then run

through each of the following pipeline stages (which are classification, shading and composit-

ing) from front to back in order to obtain the correct result. The concept is shown in listing

3.2 for a simple unnormalized sampling.

—

1 for (int i = 0; i < num_relevant_particles; ++i){

2 particle p_i = relevant_particles[i];

3 float w = weight(sample_position , p_i);

4 // sample particles contribution to all cache entries

5 for (int s = 0; s < slab_depth; ++s){

6 sampled_value[s] += p_i.value * w;

7 }

8 }

9 // perform compositing for all cache entries

10 for (int s = 0; s < slab_depth; ++s){

11 color = integrate_sample(sampled_value[s], color);

12 }

Listing 3.2: Slab-based sampling and compositing.

3.7 Shading

The prior aim of our volume raycaster is to visualize a scalar quantity of interest. In

section 3.5, we have discussed the topic of normalizing the sampled values. We have found

that, although sample normalization is the correct way of visualizing the scalar field, its major

drawback over unnormalized sampling is the loss of surface visibility. This is where shading

techniques come into play, since we are able to extract information about the shape of an

object by looking at an image where the object is illuminated. Because of this aspect, which

is widely known as shape from shading ([Hor70]), computing the illumination caused by an

external light source in addition to the volumes own emission can add a lot of realism and

additional information to our visualization, especially for surface regions.

Within the past decades, a lot of illumination techniques have been proposed, reaching

from simple local illumination models to complex global illumination techniques which take

even scattering effects inside the volume into account (see [HKRs+06]). In our interactive

setup, however, we are just interested in a fast, basic way of illuminating the volume, primarily

in order to make the location and orientation of surfaces visible. Because of that, we are

limiting ourselves to such a local illumination method within this section.

3.7.1 Gradient-Based Shading

During the whole history of computer graphics, a lot of research has been done on computing

the lighting of surfaces. Especially the phenomenological Blinn-Phong lighting model ([Bli77,

Pho75]) has become popular as a basic shading technique for surfaces. This model has

become the lighting method which is implemented in standard graphics hardware, therefore

it has also become part of the early OpenGL API. Our aim is to apply this model to our

volume. However, we don’t have any surface definitions directly at hand, so we need to

think about a fast and reliable way to extract surfaces from our particle set. Knowing the

surface, we can then use the surface normal to compute the lighting of the surface according

to the Blinn-Phong model. We are interested in shading only boundary surfaces between

regions with different scalar values, which is funded by the assumption that light will only be

reflected on such surfaces while travelling through homogenous regions without any reflection

or refraction ([HKRs+06]). Therefore, we need a way to obtain those so-called isosurfaces.

33

3.7.1 Gradient-Based Shading 34

Like isolines (also: contour lines) in 2D, isosurfaces describe surfaces where all points on the

surface have a constant value in three-dimensional space. In addition to that, such surfaces

occur at boundary regions, which means that the value of the scalar field differs on both sides

of the surface. A classical method of extracting such a surface from a volumetric dataset is

known as the marching cubes algorithm ([LC87]). The algorithm is using a uniform cell grid,

where the scalar values at each cells corner points are checked. Finding that the isosurface

of interest must be running through a part of the cell, a polygon is inserted, covering the

points of the approximated isosurface inside the cell. Extracting a high-resolution surface

mesh for SPH simulations via the marching cubes algorithm is a standard approach, used

to generate the resulting images in [YT10, YTWJ12, APKG07]. All of those publications

cover methods to enhance the appeareance fluid-air interface, aiming at a smooth surface

reconstruction. While, in this context, explicit triangulation via marching cubes is a well-

established method to extract a single surface, which can then be lighted, it is not well-suited

for our application since it causes too much computational overhead for our interactive real-

time raycasting setup and requires a uniform discretization of the simulation domain. As

an alternative to explicitely extracting the isosurface, another, gradient-based method has

become more popular in volume raycasting, as proposed by [Lev88] (see also [HKRs+06]).

The aim of this method is to find any intersection of our ray with any isosurface during the

ray traversal, which enables us to directly compute the lighting at each sampling point and

apply it along with the emission term. To do so, the gradient of the scalar field is estimated

along the three principal directions in 3D space, which leads to the so-called gradient vector

of the scalar field

∇s(x) =

∂s(x)
∂x

∂s(y)
∂y

∂s(z)
∂z

 . (3.18)

This vector has the special property that it always points to the direction of the steepest ascent

([HKRs+06]). Such information is very useful for our purpose of computing the isosurface

lighting: on the one hand, we find that the vector is always perpendicular to the isosurface, so

it can be normalized and used as a surface normal during the lighting computation. On the

other hand, the vector will be of zero length inside regions with a constant scalar value, since

the gradient in such regions will be zero. We can use this information to find the boundary

surfaces in we are looking for. As can be seen, the problem of computing the local illumination

during the raycasting process can pretty much be reduced to finding the gradient vector at

each sampling point.

For the rendering of voxel datasets, a lot of different techniques exist to obtain the gradient

during the raycasting process ([HKRs+06]). Gradients can be estimated with various methods,

like finite differences or more complex filter kernels. Also, the gradient vectors might be

3.7.1 Gradient-Based Shading 35

computed for the whole voxel dataset in a pre-processing step, or computed on-the-fly during

raycasting. Such on-the-fly methods, using central differences, have been applied by [OKK10]

and [FAW10] for the rendering of isosurfaces during SPH volume raycasting. [OKK10] are

using additional border rays around their ray bundle, with the only purpose of using them

to compute the central differences. Since the computation takes place between samples on

neighbouring rays, with a distance increasing along the ray direction, the step size of the

central differences has to be adjusted accordingly. [OKK10] have adapted this concept of

gradient computation, utilizing the slab-cache, from [MRH10]. [FAW10] are firstly mapping

the sampling points’ positions from view space back to texture space. Finding that, in contrast

to texture space, the distance along the z-axis is not uniform in view space, they are mapping

the samples to view space, computing the neighbour positions along the z-axis needed for

central differences, and mapping those positions back to texture space. To obtain the scalar

values at that sampling points (which will probably not lie exactly on one of the grid points) in

texture space, hardware-accelerated trilinear interpolation is used. This is actually a mistake,

because such an interpolation does not take the non-uniform distance along the z-axis in view

space into account, but as already noted by [FAW10], the error caused by this method is

nearly invisible. Taking a closer look at the SPH model, we find that the gradient vector of

the scalar field can be computed in a way that pretty much resembles the evaluation of the

scalar field itself (see section 3.5):

∇Q(x⃗) =
∑
i

Qi · Vi · ∇W (∥x⃗− x⃗i∥, r). (3.19)

According to equation 3.18, we have to compute the partial derivatives of the function which

is used to evaluate the scalar field in order to obtain the gradient vector. In the context of

the SPH model, as can be seen in equation 3.19, this means that we have to compute the

partial derivatives of W (∥d⃗∥, r) along our coordinate axes. Knowing that the derivative of the

SPH kernel W ′(∥d⃗∥, r) describes the derivation by the distance parameter ∥d⃗∥, we can argue

that the directional derivative ∇W (∥d⃗∥, r) can be obtained from the derivative by taking

the direction of the distance vector d⃗ from our point of evaluation to the particles center

into account. This direction is the axis along which the distance parameter ∥d⃗∥ is varied

in W (∥d⃗∥, r). Note how this also corresponds to the direction of steepest ascent mentioned

above. The directional derivative of the SPH kernel function can this way be expressed as

∇W (∥d⃗∥, r = W ′(∥d⃗∥, r) · d⃗

∥d⃗∥
. (3.20)

We can show this formally by applying the del operator (∇) to the SPH kernel and solving

via the chain rule

3.7.1 Gradient-Based Shading 36

∇W (∥d⃗∥, r) =
d

dr
·W (∥d⃗∥, r) · ∇∥d⃗∥ = W ′(∥d⃗∥, r) · d⃗

∥d⃗∥
(3.21)

, knowing that the application of the del operator to the length of a vector results in the

normalized vector, as can be seen by applying the chain rule another time:

∇∥d⃗∥ = ∇
√

d2x + d2y + d2z

= ∇(d2x + d2y + d2z)
1
2

= (d2x + d2y + d2z)
− 1

2 · ∇(d2x + d2y + d2z)

=
1

2
· 1√

d2x + d2y + d2z

· ∇(d2x + d2y + d2z)

=
1

2
· 1√

d2x + d2y + d2z

· 2d⃗

=
d⃗

∥d⃗∥
.

Hence, in contrast to simple gradient estimation schemes such as finite differences, we can

compute the gradient vector exactly by inserting equation 3.20 into 3.19:

∇Q(x⃗) =
∑
i

Qi · Vi ·W ′(∥d⃗∥, r) · d⃗

∥d⃗∥
. (3.22)

This evaluation can take place in the same step as the regular sampling of the scalar field,

i.e. we can accumulate the gradient vectors the same way as we already accumulate the scalar

values. This way of gradient computation is much more reliable than any gradient estimation

method, since it provides us with the exact solution. It is furthermore easy to integrate in our

application, because we can compute the gradient iteratively along with the scalar values at

each sample point. Having computed the gradient vector, we can normalize and invert it to

obtain the surface normal. This step is necessary because the gradients always point into the

direction of steepest ascent. That means, for the principal surface of the fluid, that they are

pointing inwards, into the volume. Since the surface normal is expected to point outwards,

we have to invert the gradient vector. This leads to the following definition of the surface

normal at a sampling point x⃗:

n(x⃗) = − ∇Q(x⃗)

∥∇Q(x⃗)∥
. (3.23)

This normal vector can be used to compute the shading at a point along the ray according

to the Blinn-Phong model, where the gradient magnitude is not zero. The result is then,

3.7.2 Contour Shading 37

together with the emissive contribution, blended with the stored values according to the

emission-absorption model (see section 3.8.2). A resulting image of a normalized sampling

with a shaded surface can be seen in figure 3.15.

Note that we have not employed any technique in order to obtain a smooth surface, i.e.

our lighted surfaces will usually appear uneven because of the particles’ isotropic spherical

smoothing kernels. Although very recently a new method has been proposed to overcome

this issue using anisotropic kernels ([YTWJ12]), we do not take into account such approaches

since they are usually applied to a high-quality offline simulation which is not comparable to

our interactive setup.

3.7.2 Contour Shading

In the previous section, we have shown how to overcome the lack of surface visibility for

a normalized sampling by employing local volume illumination. We have also found that

an unnormalized or a pseudo-normalized sampling can highlight the surface of the fluid at

the cost of a wrong visualization (see section 3.5). This visualization is especially wrong

because the lower spectrum of the transfer function is applied at the boundary regions due

to the unnormalized application of the SPH smoothing kernels. Hence, the enhancement of

the surface comes at the cost of wrong colors at the surface boundaries (3.12) in our final

image. Within this section, we will show how to overcome this limitation using normalized

samples and how we can still be able to exploit the surface highlighting mechanism present

in unnormalized or pseudo-normalized sampling approaches.

During a normalized sampling approach, we are gathering the particles’ weights along

with the unnormalized sampled value at each sampling point. When all contributions have

been gathered, we can then divide the unnormalized sampled value by the sum of weights in

order to obtain the normalized value 3.14. This basic method is shown in listing 3.3.

—

1 //1. gather contributions and sum of weights

2 float sampled_value = 0;

3 float sum_of_weights = 0;

4
5 for (int i = 0; i < num_relevant_particles; ++i)

6 {

7 particle p_i = relevant_particles[i];

8
9 float w = weight(sample_position , p_i);

10
11 sampled_value += p_i.value * w;

12 sum_of_weights += w;

13 }

14
15 //2. normalize sampled value

16 sampled_value /= sum_of_weights;

Listing 3.3: Normalized sampling.

3.7.2 Contour Shading 38

The visual surface enhancement we will encounter when using unnormalized sampling

methods is caused by the lack of this normalization step: Instead of visualizing only values of

the scalar field, we are also visualizing the sum of weight of the smoothing kernels (see also

figure 3.11). Because this sum is smaller at the boundary surface than elsewhere, we are able

to highlight the surface this way.

Our idea is to re-use the sum of weights we have gathered to perform the normalization to

exploit exactly this effect. In contrast to unnormalized methods, we can choose any random

color we want to visualize the surface regions instead of taking the same transfer function

which we already use to visualize our scalar field. We will refer to this color as the contour

color for the rest of this section. The amount of contour color contribution Ccontour at a

sampling point x⃗ is determined by the sum of weights, which we have already gathered in

order to normalize the samples, as shown in listing 3.3. We can add this contribution to

the emissive term, which is combined with the stored color and opacity values during the

compositing stage (see section 3.8.2). To obtain Ccontour(x⃗), we have to compute a contour

intensity factor Icontour(x⃗) : R3 → R which is then multiplied with the contours base color

Cbase (e.g. black) in order to receive the contour contribution:

Ccontour(x⃗) = Icontour(x⃗) · Cbase (3.24)

As for the color contribution, we have to compute a contribution of the contour to the current

alpha value (in the following denoted as αcontour(x⃗)) which is achieved in a similar manner,

using a base alpha value αbase:

αcontour(x⃗) = Icontour(x⃗) · αbase (3.25)

Since we know that the sum of kernel weights will be small for boundary regions and large

for regions inside the volume, we can compute Icontour(x⃗) by inverting this property, which

is done by subtracting the sum of weights from the constant maximal sum of weights of the

SPH kernels wmax (see section 3.5.2):

Icontour(x⃗) = wmax −
∑
i

Vi ·W (∥x⃗− x⃗i∥ , r) (3.26)

In common contour shading approaches for volume rendering, the gradient as well as its

magnitude are used to determine a contour factor (see [RE01, CMH+01, HKRs+06]). The

gradient direction can be used to determine a surface normal, which can then be taken into

account in order to decrease the contour intensity factor of surfaces we are looking at in a

perpendicular direction. This way, contours at the volumes borders in image space can be

enhanced. The gradient magnitude can be used to determine the “surfaceness“ of the volume

(see [RE01]) and taken into account as another factor for the contour intensity. However,

this involves an explicit gradient computation, which does not come as zero cost. As shown

3.7.2 Contour Shading 39

in section 3.7.1, we have to provide additional memory resources to accumulate the gradient

vector during the sampling. Also, we have found that the method described by equation 3.26

provides acceptable results that do not involve any explicit gradient computation (see figure

3.15), even if this means that we are not taking the surface direction explicitely into account.

We are achieving a similar effect because the length of the section where a ray intersects the

surface region will be proportional to the angle of incidence between the ray and the surface,

as shown in figure 3.14.

Figure 3.14: Sampling at contour regions. The upper ray will gather a larger contour intensity,
since it samples a longer section inside the black region with low weight than the lower ray. This
is caused by the different angles of incidence of both rays.

Since our formulation of the contour intensity (see 3.26) does not account for the scalar

field’s values Qi carried by the particles, we can only visualize the principal surface of the

fluid this way. In order to visualize also contours of isosurfaces inside the fluid, we would

have to compute the gradient as shown in section 3.7.1. Still, in contrast to unshaded nor-

malized sampling, we find that our contour enhancement method provides acceptable results

which allow the user to recognize the fluid-air interface at almost no computational overhead.

Therefore, this method can be seen as a cheap alternative to gradient-based shading.

3.7.2 Contour Shading 40

Figure 3.15: Surface enhancement techniques (from upper left to lower right): pseudo-
normalized sampling (see section 3.5.2), gradient-based shading, contour shading with black
contours, contour shading with white contours. The bottom of the figure shows the transfer
function which was used.

3.8 Compositing

After obtaining the sampled value of the scalar field at a point along the ray, a transfer

function, represented by a 1D texture, is used to convert that value to emission and absorption

coefficients in the form of a four-element rgba float vector. The first three components define

the red, green and blue color color component, i.e. the emissive value at the sampling point,

while the last component of the vector represents the alpha component, i.e. the opacity at

the sampling point. Those values have to be combined with the color and alpha values that

have already been gathered along the ray. Within this section, we will highlight additional

challenges of this process which arise from the key features of our raycasting setup.

3.8.1 Opacity Correction

Figure 3.16: Adaptive sampling without opacity correction. The two images were rendered
from different points of view. Note how the distance to the volume affects the opacity of the
raycasting result. Here, this is especially visible in the corrsponding regions of the images that are
marked with green rectangles.

Since, with our adaptive sampling mechanism, we are using a different stepsize for each

ray segment, the weight of the those segments when computing the resulting color of the

corresponding pixel cannot be equal, unlike for a uniform stepsize. The problem becomes

visible when we move our virtual eyepoint closer towards the volume or farther away from

it, which leads to a change of the number of samples within the volume (see figure 3.16).

Therefore, we need to perform a so-called opacity correction ([HKRs+06]). Assuming that

the sampled opacity value remains unchanged along the ray within the segment, this leads to

41

3.8.2 Integration 42

the following correction term for an uncorrected opacity α and a corrected opacity αcorrected

respectively (see [HKRs+06]):

αcorrected = 1− (1− α)
(l
l0
)

(3.27)

, where l denotes the length of the current segment and l0 is a constant which describes the

length of a reference segment. For the color contribution, the correction term is much simpler

since, in contrast to the opacity value, the color contribution does not change over the length

of the segment. Having an uncorrected color C, the corrected color Ccorrected can be computed

as

Ccorrected = C(
l

l0
) (3.28)

3.8.2 Integration

We are storing pre-multiplied colors as described by [Bli94] inside the transfer function, which

means that the color values are already weighted by the corresponding opacity values. During

the compositing, we can save an extra multiplication this way.

The integration of the sampled emission and absorption values along the ray from front

to back, using associated colors, has been described in [HKRs+06]. The new color Cnew is

computed by adding the color contribution of the current segment Ccontrib to the current color

Cold, attenuated by the current absorption αold:

Cnew = Cold + (1− αold)Ccontrib. (3.29)

For the new absorption, the equation is similar:

αnew = αold + (1− αold)αcontrib. (3.30)

We obtain the absorption of the current ray segment by sampling our transfer function,

where αcontrib = αabsorption, the alpha value of the sampled color from our transfer function.

For the emission contribution Ccontrib, we might have to take our local illumination into

account. If we decide to use a shading technique, an additional color contribution Cshading

will have to be added to the emissive value Cemission to obtain Ccontrib ([HKRs+06]). Since

we are using pre-multiplied associated colors, we are not multiplying the emission term again

by αcontrib during the compositing (see equation 3.29). Therefore, in order to receive a correct

result for the shading contribution, we also have to pre-multiply it by αcontrib:

Ccontrib = Cemission + αcontribCshading (3.31)

We use this equation to combine the contribution of our gradient-based shading with the

3.8.2 Integration 43

emission value obtained from our transfer function. As can be seen in equation 3.31, the final

color of any pixel can just get brighter when using local volume illumination, since we are not

allowing for negative light sources. This is just a natural assumption and not very suprising.

Nevertheless, we have to change this model if we want to use our contour shading method

(see section 3.7.2), where the contours might also appear black, for instance. In this case we

will have to use the contours opacity αcontour (see equation 3.25) to pre-multiply the contour

color, instead of using the local absorption (αcontrib) as above:

Ccontrib = Cemission + αcontourCcontour (3.32)

Additionally, the contours absorption αcontour has to be added to the local absorption

value:

αcontrib = αabsorption + αcontour (3.33)

Note that the contours optical properties are defined as a pair of a base color value Cbase

and a base opacity value αbase. This enables us, in contrast to regular lighting, to achieve the

effect of black contours, where Cbase is zero in each component but αbase is greater than zero.

3.9 Summary 44

3.9 Summary

Within this chapter, we have shown all key features of our SPH volume raycaster. To divide

the raycasting process into several stages that can be analyzed separately, we have introduced

the SPH volume raycasting pipeline. The main task during the ray setup stage is the con-

figuration of the resolution of our raycaster, which includes the sampling rate along the rays

as well as the number of rays shot through the image plane. This resolution can be made

dependent on the movement of the virtual camera, so that a fluent user interaction is made

possible. For the ray traversal, we are using an adaptive stepsize, which is derived from the

resolution of the image plane, as proposed by [FAW10]. During the particle access stage,

we are using a perspective grid which is aligned to the view frustum. The perspective grid

allows us to use basically infinite simulation domains and has some other advantages which

make the grid traversal very efficient. One advantage is that the cell search becomes trivial,

another one is the alignment of the cell structure with the adaptive samples along the rays.

In the sampling stage, we exploit those advantages by following equally sized bundles of rays

through the image plane and by employing a slab cache, as proposed by [OKK10, MRH10].

We are also normalizing our samples by dividing each sample’s value by the gathered sum of

weights, which provides us with a precise visualization of the scalar field. Within the follow-

ing classification and shading stage, we are applying a transfer function to obtain emission

and absorption coefficients from our sampled values. Furthermore, we are adding contribu-

tions from our shading techniques, which are gradient-based local volume illumination and

a simple yet efficient contour shading approach. During the compositing stage, we combine

the emission and absorption values along the ray after applying opacity correction for each

sample. This step is necessary because of the adaptive sampling mechanism, which leads to

non-uniform ray segment lengths.

In chapter 4, we will analyze the implementation and results of our raycasting concept.

Chapter 4

Results

4.1 Implementation

In chapter 3, we have presented our approach to a highly parallel SPH volume raycasting

solution which is designed for interactive setups. This section covers a more detailed dis-

cussion on implementation and resource demands of our concept. The different visualization

techniques that we have proposed are compared in terms of memory consumption and perfor-

mance within our experimental setup. Finally, the results are discussed and recommendations

on performance tuning are given.

4.1.1 Framework Integration & Raycasting Setup

Our raycaster was implemented as a module for the Simulation and Visualization Toolkit

(SVT), developed at the computer graphics and multimedia systems group at Siegen Uni-

versity. The toolkit is based on OpenSceneGraph (OSG), an open-source scenegraph API.

Withing the OSG-based application, the implementation of a new component can then be

realized in the form on a new node that is added as a child to an already exising node in the

graph. For our raycaster, this node was realized as a computation node, using the osgCompute

extension to OSG. This extension provides mechanisms to integrate GPGPU functionality, as

provided by the CUDA API, into scenegraphs ([OKK09]). On each frame, the computation

node executes a CUDA program which is implementing our raycasting concept and writing

the result to graphics memory which is bound to a texture. The texture is then displayed

on a screen-aligned quad. This way, realizing the upscaling for raycasting settings with lower

resolution, as described in section 3.2, can be easily done without additional efforts: for ray-

casting resolutions that are lower than the textures resolution, we simply map the texture

coordinates from their original range [0, 1]× [0, 1] to [0, r−1]× [0, r−1], where r is the reduction

factor which was proposed in section 3.2.1.

For our view frustum, we were using a near plane at a distance of 20 units and a far

45

4.1.2 The CUDA Program 46

plane at 400 units respectively. The vertical opening angle of the frustum (fovy) was set to

60◦. We could also have used the existing settings provided by the application, which were

using a much smaller opening angle and a closer near plane. Nevertheless, since we want

to keep the number of steps along the rays m as small as possible (see section 3.3), we are

changing the settings when our raycaster is invoked. This corresponds to the setup used by

[FAW10], where a large opening angle and a small relation between near and far plane lead

to a small value for madjusted. Result for madjusted in our application, using a cellsize on the

image plane of 16× 16 pixels, are shown in table 4.1 for different resolutions. Note that this

means a slight change of perspective inside the application when the user is activating the

raycasting module. However, we found this acceptable against the background of increasing

performance.

Resolution madjusted cellsz

1024× 1024 3440 215

512× 512 1728 108

256× 256 864 54

Table 4.1: Different sampling rates along z in our setup.

4.1.2 The CUDA Program

Besides the main raycasting kernel, our CUDA program consists of several parallelized kernel

functions. A conceptual overview is given in listing 4.1.

—

1 dim3 blocks , threads;

2 //... setup blocks / threads needed to execute one thread for each particle

3
4 kTransformParticlePositionsToViewSpace <<<blocks , threads >>>(...);

5
6 kComputeRelevantCells <<<blocks , threads >>>(...);

7
8 //... sort the map of particles to cells by the cell indices

9
10 //... setup blocks / threads needed to execute one thread for map entry

11
12 kFindCellStartCellEnd <<<blocks , threads >>>(...);

13
14 //... setup blocks / threads needed to execute one thread for each cell

15
16 kCountEmptySuccessorsAlongZ <<<blocks , threads >>>(...);

17
18 //... setup blocks / threads needed to execute one thread for each pixel

19
20 kRaycast <<<blocks , threads >>>(...);

Listing 4.1: Different CUDA kernels in our GPU program.

4.1.2 The CUDA Program 47

The first kernel (kTransformParticlePositionsToViewSpace) in listing 4.1 transforms

each particle’s position from world space to view space by simply multiplying its world space

position by the view matrix. However, in our setup, the particles carry their influence radius

as an additional information in their w component, so we have to extract this information.

After this, we can replace it by 1 (since the particle’s position is a point in homogenous

coordinates) and insert the influence radius again as the w component after the multiplication

with the view matrix has happened. Also, the standard view matrix, as also used by OSG, is

assuming a right-handed coordinate system with the viewer looking along the negative z-axis.

In contrast, our perspective grid is using a left-handed coordinate system where the viewer is

looking along the positive z-axis. Therefore, we also have to invert the z-component in this

step. This leads to the code shown in listing 4.2.

—

1 void kTransformParticlePositionsToViewSpace(const ParticleGrid grid ,

2 const float4 * particleWorldPositions , const Mat4x4 viewMatrix){

3 const unsigned int ptclIdx = blockIdx.x * blockDim.x + threadIdx.x;

4
5 if (ptclIdx < grid.numPtcls)

6 {

7 float4 posW = particleWorldPositions[ptclIdx];

8 float4 posWH = make_float4(posW.x, posW.y, posW.z, 1.0f);

9
10 float3 posView = make_float3(viewMatrix.mult(posWH));

11 posView.z *= -1.0f;

12
13 grid.ptclPositions[ptclIdx] = make_float4(posView , posW.w);

14 }

15 }

Listing 4.2: Transformation of the particle’s positions to view space.

The next kernel function in listing 4.1, kComputeRelevantCells, computes the corre-

sponding entries of the map from cells to particles for each particle. Each cell is a small

asymmetric frustum in view space, which makes it more expensive to check whether a par-

ticle intersects a cell. Because of that, we determine a candidate cell range by using the

particle’s bounding box in a first step. To obtain this range, we need to find the minimum

and maximum coordinates given by the bounding box and map those coordinates to cell coor-

dinates inside our perspective grid. Listing 4.3 shows the code of the function which provides

such a mapping.

The function computes the z coordinate of the grid cell by applying exactly the same func-

tion which is used to compute the current ray coordinate ⌊u⌋ from a given distance t to

the eyepoint along the z-axis (see section 3.3). Instead of the pixel size σ, the size of a

cell on the image plane s is used. In listing 4.3, this is done in line 3 via the function

dMapDistanceToCoord_Grid. Since the cell size in x and y rises linearly along z, the cell size

s′(z) : R → R at the given z coordinate in view space can be obtained by multiplying the z

coordinate by s : s′(z) = s · z (see line 5 in listing 4.3). Since the perspective grid is centered

4.1.2 The CUDA Program 48

—

1 uint3 dGet3DGridCoordinate(const float3 viewSpacePosition)

2 {

3 unsigned int zGrid = dMapDistanceToCoord_Grid(viewSpacePosition.z);

4
5 float cellSizeXY = viewSpacePosition.z * gCnst.CellSize;

6
7 unsigned int xGrid = viewSpacePosition.x / cellSizeXY + gCnst.CellsX * 0.5f;

8 unsigned int yGrid = viewSpacePosition.y / cellSizeXY + gCnst.CellsY * 0.5f;

9
10 return make_uint3(xGrid , yGrid , zGrid);

11 }

Listing 4.3: Mapping from view space to the perspective grid.

around the origin in x and y, the current grid cell in x and y is obtained by dividing x and y in

view space by the cell size at the given z position s′(z) and adding half of the number of cells

in each dimension, as shown in listing 4.3. This way, we ensure that the 3D grid coordinates’

range equals [0, cellsx − 1]× [0, cellsy − 1]× [0, cellsz − 1].

Knowing the cell range covered by the particle’s bounding box, we check each cell in that

range precisely. This is done by a check for each of the six planes of the faces of a frustum-

shaped cell. If the particle has a positive oriented distance to one of the planes that is larger

than its radius, this plane is a separating plane and the particle lies outside the cell. If no

separating plane was found, the particle intersects the cell. Figure 4.1 shows an example

situation where a set of cell candidates has been determined by using the particle’s bounding

box and where all relevant cells within the candidate set have been detected.

Figure 4.1: Relevant cells for a single particle. Out of 27 possible checks, given as the maximum
number of relevant cells per particle, only 12 checks are performed. This is due to the computation
of a candidate set of cells by using the particles bounding box. Among the 12 candidates, 4
candidates (shown in red) were discarded after performing a check against each cell’s separating
planes.

After the map of particles to relevant cells has been computed, we have to sort the map

by the cell indices, as described in section 3.4.2. This step is also implied in listing 4.1 at

4.1.2 The CUDA Program 49

line 9. For the radix sort, we are using the free CUDPP library, which has been developed

along with the publication of [SHZO07] by the authors. The following kernel functions 3.4.2

kFindCellStartCellEnd and kCountEmptySuccessorsAlongZ are executed in parallel in or-

der to build the cell start / cell end arrays and the empty successors cache respectively, as

desribed in section 3.4.2.

The last kernel function shown in listing 4.1, kRaycast, is our main raycasting function

and hence the most complex and important one. It is implementing the traversal of the whole

volume raycasting pipeline, starting with the ray setup stage. Within this stage, the ray

vector r⃗, reaching from the eyepoint to the ray’s position on the image plane, is computed.

We are not normalizing r⃗, instead we are just dividing it by the distance Dnear to the near

plane, leading to ray vectors with increasing length towards the frustum boundaries. This

ensures that we can use the same ray parameter t for all rays to get the same position along

the z axis for all rays in each sampling step, as shown in figure 4.2.

y

z

r1

r3

r2

Figure 4.2: Ray vectors. The vectors from the eye to the image plane are shown as black arrows.
The same ray parameter t can be used to obtain sampling points that have the same position
along the z-axis for all rays, since the vectors will just be divided by the distance to the near plane
instead of being normalized.

For stochastic jittering, the local offset for each ray’s parameter is read from a 2D array

with 32 × 32 entries. This offset has to be added to the shared ray parameter t each time

the sampling position is computed. After the ray setup stage, the main loop of the volume

raycasting pipeline is entered by each ray. The basic structure of the main loop is shown in

listing 4.4.

Note that this is a very simplified version of our raycaster, where some code optimizations

are missing as well as many key features, such as flexible slab size, sample normalization,

opacity correction and shading. Nevertheless, it is well-suited to explain the basic strategy

4.1.2 The CUDA Program 50

—

1 while (sGridIdx3D.z < gCnst.CellsZ)

2 {

3 syncthreads ();

4 if (isLeader){

5 sCellIdx = dGetLinearIdxFrom3DIdx(sGridIdx3D);

6 sEmptyCells = grid ->cellsToEmptyCellSpaceAlongZ[sCellIdx];

7 sCellStart = grid ->firstCellArrayIndices[sCellIdx];

8 sCellEnd = grid ->lastCellArrayIndices[sCellIdx];

9 sGridIdx3D.z += sEmptyCells;

10 sCurrentCoord += sEmptyCells * SAMPLES_PER_CELL;

11 }

12 syncthreads ();

13
14 if (sEmptyCells) // empty space leaping

15 continue;

16
17 #pragma unroll SLAB_DEPTH

18 for (int s = 0; s < SLAB_DEPTH; ++s)

19 samples[s] = 0.0f;

20
21 //add contribution of all particles in this cell to all sampling points

22 int ptclListPos = sCellStart;

23 do {

24 int pctlArrayIndex = grid ->ptclsToCells_ptcls[particleListPos];

25 float ptclValue = grid ->ptclValues[pctlArrayIndex];

26 float ptclVolume = grid ->ptclVolumes[pctlArrayIndex];

27 float4 ptclPos = grid ->ptclPositions[pctlArrayIndex];

28
29 #pragma unroll SLAB_DEPTH

30 for (int s = 0; s < SLAB_DEPTH; ++s){

31 float rayParameter = mapCoordToDistance(sCurrentCoord + s);

32 float3 samplePos = (rayParameter + jitterOffset) * rayVec;

33 float3 distVec = samplePosView - make_float3(particleViewPos);

34
35 samples[s] += ptclValue * ptclVolume * dComputeWeight(distVec , ptclPos.w);

36 }

37 } while (++ particleListPos <= sCellEnd);

38
39 //front -to -back compositing for all sampling points

40 #pragma unroll SLAB_DEPTH

41 for (int s = 0; s < SLAB_DEPTH; ++s){

42 // apply transfer function

43 float4 colorContrib = make_float4 (0.0f);

44
45 if (sampledValues[s] > 0.0f)

46 colorContrib = tex1D(gTransferFuncTex , sampledValues[s]);

47
48 // compositing using the "over" operator (assuming pre -multiplied colors)

49 color += colorContrib * (1.0f - color.w);

50 }

51
52 //cell iteration , performed by the leading ray

53 syncthreads ();

54 if (isLeader){

55 sGridIdx3D.z += 1;

56 sCurrentCoord += SLAB_DEPTH;

57 }

58 }

Listing 4.4: A simplified raycasting main loop.

4.1.2 The CUDA Program 51

that we are using. The first ray of each ray bundle, identified as the first CUDA thread of

each block, is starting the loop with the initialization of shared values that are related to cell

traversal. This includes cell start and end indices in the map from cells to particle indices as

well as the number of empty cells that can be skipped and the current ray coordinate. In line

14 and 15 of listing 4.4, empty cells are skipped, while lines from line 52 until the end describe

the advance of the rays for non-empty cells. The rest of the code shown in listing 4.4 can be

divided into two parts: lines 17 to 37 describe the sampling stage, lines 39 to 50 describe the

classification and compositing stages. During the sampling stage, we add the contribution of

each particle in the current cell to the sampling points of our slab cache. Note that we use the

simplified assumption here that the slab cache has the exact size of the number of samples

per cell. In our final program, this number can also be a fraction of the number of samples

per cell, which involves multiple passes to process the aforementioned two stages in lines 17

to 50. Since the number of samples per slab is fixed, we can tell the CUDA compiler to unroll

the loops in lines 18, 30 and 41 SLAB DEPTH times, using the unroll pragma ([NVI11]). This

way, the incrementation of the counter variable s is saved, as well as the expensive if-clause.

This method can help us to improve the performance of our CUDA kernel ([KH10]). As the

sampling has been done for all points inside our slab cache, the compositing step processes

all of these points subsequently from front to back.

As can be seen, a lot of variables are necessary for our main raycasting kernel. We

have already stored some of them in shared memory, so that they do not affect the memory

consumption of each single thread. Still, each thread will need a certain amount of local

memory and registers. In our application, those registers can be identified as the limiting

factor, using NVIDIAs interactive excel sheet known as the CUDA Occupancy Calculator.

This sheet enables the programmer to explore the occupancy of the streaming multiprocessors,

taking the possible limiting factors into account. Those are the number of threads per block,

the amount of shared memory consumed by each block and finally the number of registers

per thread. We can know the first two of those three factors by checking the source code of

our CUDA program. The third one, the number of registers per thread, is controlled by the

CUDA compiler. Nevertheless, we can determine the number of registers assigned to each

thread by using NVIDIAs Visual Profiler, a free tool that comes with the CUDA Toolkit

4.0 which we have used. For our raycaster, the number of shared memory and per-thread

memory needed by the raycasting kernel depends on the visualization technique we want to

use. For normalized sampling, we need additional memory per thread to accumulate the

sum of weights for each sample inside our slab cache. In addition to that, we also need to

accumulate the gradient vector for each of those samples, if we want to use gradient-based

illumination (as also mentioned in sections 3.6.2 and 3.7.2). The number of threads does not

depend on the visualization technique we are using. In our application, we were always using

bundles of 16×16 rays, leading to 256 threads per block. The results of occupancy calculation

4.1.2 The CUDA Program 52

for different techniques are shown in table 4.2, assuming a slab depth of Dslab = 16:

Technique Shared Memory / Block Registers / Thread Occupancy

Pseudo-Normalized Sampling 104 bytes 40 50,0%

Contour Shading 104 bytes 37 50,0%

Gradient-Based Shading 104 bytes 55 33,0%

Table 4.2: Occupancy calculation for different visualization techniques.

The Occupancy Calculator sheet reveals the number of registers as the limiting factor for

occupancy in all cases. Note that the occupancy depends on the specific CUDA architec-

ture which the graphics hardware is implementing, denoted as the Compute Capability. The

CUDA compiler was left the freedom to decide about the number of registers that should be

used. The compiler’s optimization is dependent on many factors, one of those is the Com-

pute Capability. For all our performance measurements, a Geforce GTX 550 Ti device with

Compute Capability 2.1 was used.

Furthermore, we have analyzed the memory consumption of our perspective grid. As

explained in section 3.4.2, the perspective grid consists of four structures:

• The cell start array

• The cell end array

• The empty successors cache

• The map from cells to relevant particles

The first three data structures have a neglectable size, since they are storing one value

for each cell: using a grid with a cell size on the image plane of 16 × 16 pixels, with a

resolution of 512 × 512 pixels, we have 32 × 32 × 108 = 110592 cells (see 4.1). With four

bytes for each entry, the memory consumption of each of the first three data structures equals

110592 byte ∗ 4 = 432 KiB.

The map from cells to relevant particles, on the other hand, is much larger. For each

particle out of Nparticles particles in total, we need to reserve a fixed number of nmax slots for

each particle in this map when determining its relevant cells (see figure 4.1). Each entry of

the map needs eight byte, four for the particle index and four for the cell index. This leads

to a total memory consumption of Nparticles × nmax × 8 bytes for the map. The amount of

memory needed for the map for different values of Nparticles and nmax is summarized in table

4.3.

4.1.3 Performance Optimization Techniques 53

Nparticles nmax Memory Consumption

131,072 8 8 MiB

131,072 27 27 MiB

524,288 27 108 MiB

524,288 64 256 MiB

Table 4.3: Memory consumption of the perspective grids particle map.

As we can see, for relatively large particle sets (for interactive simulations), the memory

consumption stays still moderate. The GPU which we have used for our experiments for

instance (a Geforce GTX 550 Ti), has a total amount of 1024 MiB of graphics memory, so

there is no danger that we are running out of memory because of the perspective grid within

our interactive setup. Note that even for an uncommonly high value for nmax of 64, the

amount of memory requested is still manageable. For simulations with more particles, note

that it is sufficient to reserve this space for all particles inside the view frustum. If we, for

instance, have 10 million particles inside our simulation domain, but we know we will see one

million of them at maximum at a time, the approach might still work out. However, we have

not been investigating such large scale particle sets, which can nowadays not be simulated

in real-time using standard consumer hardware and are therefore not possible for interactive

simulations. For such cases, we are referring to [FAW10], who have shown how their approach

can be used to interactively explore large, pre-computed cosmological SPH datasets with a

pre-computed access structure.

4.1.3 Performance Optimization Techniques

Our sampling points along the rays are organized in slabs of equal size. Within each of those

slabs, the location of the sampling points is determined by the adaptive sampling mechanism

we are using. During each traversal of the points inside the slab cache, we have to know

the current ray parameter t for each of those points in order to determine its position in

view space. Since this parameter is shared along all rays of the bundle for a given position

inside the slab cache (see section 4.1.2), we can store it in shared memory. Furthermore, this

counts for all positions inside the slab cache, so we have an array sRayParams stored in shared

memory which stores the ray parameters for all Dslab samples in our slab cache. We need to

compute the ray parameter for each of those samples and store it in the corresponding entry

of this array. Instead of employing another loop, which could be executed by the leading ray,

we can compute each entry of this array by using the first Dslab arrays of a block in parallel,

as shown in listing 4.5.

The reader might have realized that we are actually using Dslab + 1 pre-computed values

4.1.3 Performance Optimization Techniques 54

—

1 if (rayIdx <= SLAB_DEPTH)

2 {

3 sRayParams[rayIdx] = mapCoordToDistance(sCurrentCoord + rayIdx);

4 }

5 syncthreads ();

Listing 4.5: Collaborative ray parameter computation.

in this example. The additional ray parameter at position sRayParams[SLAB_DEPTH], which

might correspond to a point beyond the cells border, is only used for opacity correction. Since

we want to obtain the length of each ray segment during this process, we have to provide an

extra entry in order to be able to also compute the length of the last sample in the slab cache,

as shown in listing 4.6.

—

1 for (int s = 0; s < SLAB_DEPTH; ++s)

2 {

3 //... classification and shading: determine colorContrib

4
5 // opacity and color correction

6 const float segmentLength = (sRayParams[s+1] - sRayParams[s]) * rayVectorLength;

7
8 colorContrib.w = 1.0f - pow ((1.0f - colorContrib.w), segmentLength / referenceLength

);

9 colorContrib.x = colorContrib.x * (segmentLength / referenceLength);

10 colorContrib.y = colorContrib.y * (segmentLength / referenceLength);

11 colorContrib.z = colorContrib.z * (segmentLength / referenceLength);

12
13 //... compositing: apply colorContrib

14 }

Listing 4.6: Opacity correction.

We have already introduced empty space leaping, provided by our perspective grid, as

a well-known performance optimization technique. Another very important optimization

technique for volume raycasting is known as Early Ray Termination (ERT). The basic idea is

that the pixel color which is gathered along a ray will change just very slightly after its opacity

component (α) has become greater than a limiting value αterminate which is near to 100%.

Therefore, one may terminate the ray traversal earlier, which will avoid further sampling and

hence increase performance at the cost of a nearly invisible change in pixel color, compared

to a full sampling along the ray. Since our raycasting process is performed by bundles of rays,

it is not possible to terminate single threads without terminating the whole block. This is

especially due to our shared computation of the ray parameters (see listing 4.5). Therefore,

like [MRH10] and [OKK10], we are using a block-wise ERT mechanism. There are several

possilities to implement such a mechanism within a CUDA kernel. The problem that needs to

be solved is that the threads need to share information about the current value of α that they

have gathered. If all rays have an opacity of α ≥ αterminate, the whole block may terminate.

4.1.4 Measured Performance 55

The most simple possibility is to store a flag for each thread in shared memory. Each ray can

then set its corresponding flag as soon as its gathered opacity is great enough to terminate.

The leading ray sets its flag only if all other flags are already set. Each thread can then, after

synchronizing, check the flag of the leading ray and terminate if it is set. For our bundles

of 256 rays, this approach involves additional shared memory of 256 × 4 = 1024 byte. We

can reduce this amount of memory needed by using CUDA’s warp voting functions. Since

threads are always processed as so-called warps of 32 threads, special vote functions can be

used to evaluate a condition warp-wise. Nevertheless, we are using a third method which uses

CUDA’s atomic operations ([NVI11]), needing just a single variable in shared memory. The

idea is to initialize the termination flag with 1, which is done by the leading ray, and letting

each thread combine it with its evaluated ERT condition by using an atomic AND operation.

The concept is shown in listing 4.7.

—

1 if (isLeader)

2 {

3 sBlockTerminationSignal = 1;

4 }

5 syncthreads ();

6
7 atomicAnd (& sBlockTerminationSignal , unsigned int(color.w >= 0.95f));

8 syncthreads ();

9
10 if (sBlockTerminationSignal)

11 return color;

Listing 4.7: Early ray termination with atomic operations.

4.1.4 Measured Performance

We have measured the performance of all visualization techniques that were proposed within

our experimental setup, using 131,072 particles. Table 4.4 shows timings for the actual ray-

casting process, without perspective grid construction, for different techniques and different

viewport sizes.

Resolution Pseudo-Normalized Sampling16 Contour Shading4 Gradient-Based Shading2

1024× 1024 219 (4.57) 421 (2.36) 801 (1.25)

512× 512 100 (10.0) 184 (5.43) 361 (2.77)

256× 256 79 (12.66) 140 (7.14) 287 (3.48)

Table 4.4: Performance of different visualization techniques. All timings are given in milliseconds.
In brackets, timings are expressed as frames per second. Grid construction is not included.

Those measurements were performed with different settings for the slab depth Dslab,

4.1.4 Measured Performance 56

indicated by the small subscripted numbers next to the name of each technique. In section

3.6.2, we have shown that Dslab can be configured using an integral factor k:

Dslab =
Ntile

2k
(4.1)

For each technique, we have determined the ideal value of k by testing all valid values from

k = 0 to k = 4 for our configuration with Ntile = 16. The results for a resolution of 256× 256

pixels can be seen in figure 4.3.

Figure 4.3: Performance for different slab depths.

Obviously, the slab depth should not be equal for all techniques. This is due to the memory

consumption of the different CUDA kernels for different techniques, as described in section

4.1.2. If a CUDA kernel is consuming more resources, the hardware can potentially accom-

modate less threads. We can counteract this behaviour by reducing the slab depth, which

will lead to less values in our slab cache and therefore to a smaller memory consumption of

each thread. This will, on the other hand, make our slab cache less efficient. Reducing the

size of the cache by half will lead to a doubling of global memory traffic for particle access

operations, since we will need to access the particle set in twice as many passes to process

all of the Ntile sampling points within the cell. Therefore, we find that the ideal size of

Dslab is always a tradeoff between global memory traffic and per-thread memory consump-

tion. As can be seen in figure 4.3, the ideal size of Dslab for pseudo-normalized sampling

is Dslab = Ntile = 16. The contour shading technique uses normalized samples, leading to

higher per-thread memory consumption, since we have to accumulate the sum of weights

along with the samples. This makes a smaller slab depth potentially more efficient, in this

case the optimal slab depth is Dslab = 4. Finally, when using gradient-based shading, the

4.1.4 Measured Performance 57

gradient vector has to be accumulated along with the samples and the sum of weights. Since

the gradient vector consists of three floating point values, it causes three times as much ad-

ditional memory consumption compared to the sum of weights. In our setup, this leads to

the slab cache having no measurable effect on performance for gradient-based shading, since

the performance for Dslab = 2 equals approximately the performance measured for Dslab = 1,

where no slab-caching mechanism is employed at all.

To measure the effect of our empty space leaping (ESL) mechanism, we have compared

the the performance of two raycasters, one with empty space leaping enabled and one without

empty space leaping. The raycaster without empty space leaping was skipping empty cells

individually, while the raycaster with empty space leaping was building and using our empty

successors cache. The technique used was contour shading, with a slab depth of Dslab = 4,

the number of particles was 131,072. Table 4.5 shows the total timings needed for raycasting

and grid construction (including the construction of the empty successor cache, if any) for

different viewport resolutions.

Resolution Raycasting / Grid Construction, ESL Raycasting / Grid Construction, no ESL

1024× 1024 421 / 52 475 / 43

512× 512 184 / 38 178 / 37

256× 256 140 / 36 128 / 36

Table 4.5: Timings for empty space leaping. All timings are given in milliseconds.

Both using a slab depth of Dslab = 4, the raycaster with ESL enabled gets 43 registers

per thread and 52 byte of shared memory, while the raycaster without ESL was assigned

45 registers per thread and needs 56 bytes of shared memory. As can be seen, for lower

resolutions the number of cells in z-direction that can be skipped on average is too small

to compensate the overhead which is caused by the higher amount memory consumption.

This way, the raycaster without ESL outperforms the one with ESL enabled. However, this

changes when the resolution increases, because the number of cells in z-direction gets larger

(see table 4.1). This makes skipping empty regions in a single step more efficient compared

to cell-wise skipping, so that ESL finally pays off.

We should note at this point that the raycasting performance results for the different

techniques as shown in table 4.4 are roughly average timings, since there are other factors

besides the slab depth that have a strong influence on performance. One of those factors is

the amount of opacity which we use in our transfer function. Since we are using early ray

termination (ERT), as shown in section 4.1.3, transfer functions with higher opacity values

will lead to an earlier termination of the ray bundles. For the results shown in table 4.4,

we have used a transfer function T with average opacity values. We have also measured

the performance with and without opacity correction for the same example setup, using the

4.1.4 Measured Performance 58

contour shading technique with a 1024×1024 resolution of the image plane, for two additional

transfer functions. Tlow is containing smaller opacity values than those used in T , while Thigh

contains higher opacity values respectively. The ray termination threshold for the opacity

value was set to αterminate = 0.95. The results are summarized in table 4.6.

Using ERT? Tlow T Thigh

no 671 671 671

yes 483 421 239

Table 4.6: Impact of the transfer functions opacity on performance. All timings are given in
milliseconds.

Furthermore, the distance from the viewer to the volume has an impact on the perfor-

mance. Usually, one would expect that the performance decreases when we are getting closer

to the volume, since more of our adaptively distributed sampling points will lie inside the

volume. This is also the case in our application. However, in our setup this behaviour was

not as strong as for the raycasting module of [OKK10]. We have compared both modules with

ours configured to use pseudo-normalized sampling, which was closest to the unnormalized

sampling used in their module. As a result, we have observed that our raycaster outperforms

their raycaster when the eyepoint is close to the volume. On the other hand, when moving

farther away from the volume, the method of [OKK10] is faster than our method. We believe

that there are two reasons for that. As a first reason, we find that our perspective grid is very

well-adapted to the particles in regions that are close to the image plane, which makes our

raycaster fast in those regions. This changes when moving away from the image plane along

the z-axis in view space, since the cellsize increases along z. Therefore, cells that are farther

away are potentially containing a lot more particles and therefore also more non-relevant

particles for each sampling point. This will cause more unnecessary global memory traffic

and slow down the performance of our application. In contrast, [OKK10] are using an octree

that is built in world space, with a uniform cell size at each tree level. Therefore, in their

raycasting module the cells are always equally well adapted to the particles. The second

reason is that they are employing an additional particle hierarchy to speed up the raycasting

process in far regions. In a pre-processing step for the raycaster, coarser representations of

the particle set are built. Those coarser variants are then used instead of the original particle

set when sampling far regions. [FAW10] are employing a similar mechanism, where a particle

hierarchy is used along with an octree.

So far, we have evaluated the performance of our raycaster. All timings were given without

the time needed to construct the perspective grid. This was due to the fact that the construc-

tion of the grid is not the limiting factor in our application, so we have omitted to mention

it until this point. The part of the grid construction which has the strongest impact on the

4.1.4 Measured Performance 59

performance is the sorting of the map from particles to cells, in order to obtain a mapping

from cells to particles. We have measured the time needed for the whole grid construction

and the time needed to sort the particle set, for two different particle sets and three different

resolutions, and summarized the results in table 4.7.

Resolution Total (Sorting), 216 Particles Total (Sorting), 217 Particles

1024× 1024 32 (16) 52 (31)

512× 512 20 (16) 38 (31)

256× 256 19 (16) 36 (31)

Table 4.7: Timings for grid construction. All timings are given in milliseconds.

As can be seen, the time needed for the sorting step is constant and just depending on the

number of particles. Since radix sort has a linear runtime ([SHZO07]), we can assume that

the sorting time is linearly depending on the number particles. The measurements shown in

table 4.7 are approving this assumption. The time which is needed for e.g. the construction

of the empty successors cache scales with the number of cells, depending on the resolution of

the viewport. As can be seen in table 4.7, there is a threshold for the number of cells where

the hardware cannot accommodate enough threads and hence needs multiple passes, which

also causes a threshold for the time needed for grid contruction.

4.2 Summary & Discussion

In section 4.1, we have presented the implementation of our approach to SPH volume ray-

casting. It has been shown that the performance of our raycaster strongly depends on the

configuration which we are using. An important parameter in this case is the slab depth Dslab,

which is adjusted depending on the technique which we are using. This adjustment is made

due to the tradeoff between global memory traffic and local memory consumption. As for

most CUDA kernels, the ideal configuration of our raycasting kernel is furthermore dependent

on the particular hardware platform. We have seen that a huge gap in performance exists

between the pseudo-normalized raycaster and the contour-shading raycaster on the one hand

and the raycaster with gradient-based shading on the other hand. Occupancy calculations

support this observation and can therefore serve as a first clue towards performance limiting

factors.

Our raycaster is reducing the amount of per-thread memory a lot, compared to other

approaches, by sharing the whole data related to cell traversal data per thread block. This

is made possible by our perspective grid as well as the sampling rate along the z-axis in view

space, which is the same for all rays. The ray parameters within a slab can therefore be

computed in a single step in parallel, which is another advantage of this approach. Neverthe-

less, the main limiting factor for our kernel is still the amount of local memory consumption.

For our empty space leaping mechanism, this means that the small overhead caused by its

additional memory requirements pays off only at high resolutions (see table 4.5).

As another performance optimization technique, we have employed early ray termination

(ERT). Besides the configuration of the slab depth, this identifies the most important factor

for the performance of our application, which is the opacity used within the transfer function.

Using ERT, changing the opacity of the transfer function can lead to a performance change

by a factor of two for our raycaster (see table 4.6).

In order to build our perspective grid, we have to find all relevant cells for each particle,

which can be done in parallel for all particles. One might think that this is an expensive

operation, since we have to check a set of frustum-shaped cell candidates for intersection with

the particle. However, this is clearly not the most expensive part of the grid construction.

Instead, the sorting of the map from particles to cells in order to obtain the map from cells

to particles consumes the most amount of time (see table 4.7). Luckily, we have found that

this sorting operation scales linearly with the size of the particle set, so that the time needed

for constructing the perspective grid will very likely always be small, compared to the time

which is needed to perform the actual raycasting.

We have also evaluated the overall global memory consumption of our perspective grid.

The most important part of the grid structure is the map from cells to relevant particles.

This map is, nevertheless, consuming still a moderate amount of global memory modern

graphics hardware can handle. Compared to e.g. the perspective grid of [FAW10] this is an

60

4.2 Summary & Discussion 61

advantage, since they need multiple passes to process the grid as it is too big to fit into GPU

memory at all. Certainly we should note that their raycaster is much faster than ours, and

that is has been designed to explore very huge non-interactive datasets and therefore follows

a completely different approach. For sets of more than two million particles, as used in their

example datasets, the memory consumption of our perspective grid will also be too large to

fit into common GPU memory. Put in a nutshell, we are benefitting from the fact that our

particle dataset are relatively sparse compared to the size of our view frustum, so it is more

sensible to make our memory consumption dependent on the number of particles than on the

viewports resolution, in contrast to the setup of [FAW10].

We have also found that our raycaster outperforms the one of [OKK10] at distances close

to the volume, while the opposite is true at larger distances between the virtual eyepoint

and the volume. This caused by our adaptive cellsize in view space and their hierachical

particle representation. Nevertheless, having a better performance at close regions is still an

acceptable result.

Besides those performance aspects, we find that our implementation provides visually

convincing results. Providing three visualization techniques which run at different speed

levels and provide different levels of visual quality, the user may always choose the best-

suited approach for the particular purpose. The pseudo-normalized sampling provides the

fastest visualization, at the cost of visual quality. The contour shading approach is providing

visually correct results at acceptable speed by employing normalized sampling. The gradient-

based shading approach is the slowest visualization method. However, it takes the direction

of an external light source and the surface normal into account, therefore it is able to visualize

more information than the contour shading approach. It is furthermore configurable by all

common parameters for blinn-phong shading, such as the range and intensity of specular

highlights, while the contour shading approach is just configurable by the contour color and

contour opacity. Also, the gradient-based method can visualize any isosurface within the

volume, while the contour shading approach is limited to the principal surface. Nevertheless,

during our experimentation, we found the contour shading approach to be the best solution,

since it visualizes this most important surface in a convincing way and is furthermore much

faster than gradient-based shading.

It depends on the definition of the term whether we can call our approach truly interactive.

As shown in table 4.4, the raycaster that realizes our preferred visualization technique, which

is contour shading, is able to perform the raycasting process at approximately 5 frames

per second, excluding grid construction. In terms of games or movies, this is for sure not

interactive. However, in our simulation setup, the most important task of a raycaster is to

instantly provide a high-quality snapshot of the current situation. Unlike for games, the

user does not have to react instantly on events inside the virtual environment. Instead, the

possibilty of navigating through the scene to inspect the data is important. At 3 - 5 frames

4.2 Summary & Discussion 62

per second, we found that this can still be done relatively conveniently. Since we have the

option to speed up navigation by instantly reducing the resolution for our raycaster, and also

the option to switch back as soon as the interaction for navigation is over, we are providing

a convenient environment for an ad-hoc inspection of the data. Because of those reasons, we

can state that our result is an interactive SPH volume raycasting solution.

Chapter 5

Conclusion

5.1 Summary

Within this thesis, a novel approach to SPH volume raycasting, which is able to provide a high

quality volume visualization, has been proposed. Using a gathering approach, implemented in

CUDA as a parallel raycasting algorithm, the method is better suited than other approaches

([FAW10]) to visualize the exact values of the scalar field. This is due to the fact that it

provides the possibility of normalizing the sampled values in the same pass where the regular

sampling takes place, unlike for scattering approaches. Our approach uses a discretization of

the view frustum, as proposed by [FAW10], in order to build a perspective grid which stores

references to all relevant particles for each cell. The adaptive cell size of the perspective grid is

aligned with our adaptive steps along the rays, leading to a fixed number of samples per cell.

This property, along with the alignment of the cells to the view frustum, can be exploited by

using several caching mechanisms. Rays are bundled into units of equal size, which correspond

exactly to the thread blocks used in our CUDA program. Therefore, information about the

cell traversal can be shared among all rays in a block, reducing the memory consumption per

thread. Also, a slab cache, following [MRH10, OKK10], is used to process a certain number

of sampling points in a single pass when sampling the scalar field.

Furthermore, in order to provide the user with visual information about surfaces for the

normalized sampling result, local volume illumination can be added. In contrast to other

approaches like [OKK10, MRH10], we are directly obtaining the exact gradient in order to

compute a normal vector which is needed for the lighting computations. This method is

more stable than any gradient estimation technique, such as finite differences. In addition,

we have presented a simple yet visually satisfying contour shading approach for SPH volume

data, which can be seen as a cheaper alternative to gradient-based shading. For an even

cheaper visualization at the cost of visualizing false information in some regions, we have

proposed pseudo-normalization. The simple idea behind this technique, which can also be

used for scattering approaches, is to divide each sample by a constant factor, assuming a

63

5.1 Summary 64

fully occupied particle neighbourhood at each point. Measuring the performance of different

visualization techniques, we have found that gradient-based shading is much slower than

contour shading, which is in turn slower than pseudo-normalized sampling. The performance

of each technique can be optimized by using the ideal slab depth, which is tied to the memory

consumption of the threads and therefore to the visualization technique we choose.

As additional optimization mechanisms, empty space skipping and early ray termination

have been implemented. While empty space skipping pays off only at high resolutions, early

ray termination is the most important optimization method in our application. Since this

method is dependent on the opacity which is used for the transfer function, the choice of the

transfer function can also have a huge impact on the performance of the whole application.

The proposed optimization and visualization techniques, along with the chance to change

the quality instantly on user interaction, provide us with a high-quality interactive raycasting

solution that is especially suited for small and medium scale particle sets, as used in interactive

SPH simulation environments.

5.2 Limitations and Future Work

Throughout this work, we have assumed fixed cell size of 16 × 16 pixels on the image plane

for our perspective grid. This leads to 256 pixels in each cell and therefore to 256 threads in

each thread block of our CUDA program, which is a good choice. However, this ties the cell

size that is used for the perspective grid to the size of CUDA’s thread block and vice versa,

which is not desireable. If, on a future device, the ideal number of threads should be 1024, our

approach will encourage us to use a cell size of 32× 32 pixels on the image plane. Otherwise,

we would have the change the raycasting kernel, since have been assuming that each ray in a

ray bundle will always traverse the same cells as the others. Such a change will come along

with a more complex CUDA kernel, introducing additional memory needs. On the other

hand, using cells with a size of 32× 32 pixels on the image plane will, in our particular setup,

also slow down the raycaster. This is due to the fact that, on average, more non-relevant

particles will be fetched from global memory at each sampling point. To summarize this

aspect, we can state that the configuration which we used to implement our well-performing

raycaster is a very sensitive construct which depends on the particles’ influence radius as well

as on the ideal number of threads per block for our CUDA program.

In general, a major disadvantage of a CUDA-based approach like ours is the difficult pro-

cess of performance optimization. Since we have to optimize each visualization technique of

the raycaster individually on a particular hardware platform, changing that platform means

a time-consuming performance tuning process, including re-compilation of the program each

time a different slab depth is tested. However, CUDA is able to handle shared memory of

flexible size. Using this feature, we could adjust the slab depth dynamically in our program,

making a re-compilation unneccessary. Still, the CUDA compiler will always optimize our

raycasting kernel for a particular compute capability. Optimizing for our particular platform

means that we loose backwards compatibility if we do not tell the compiler to ensure com-

patibility with older compute capabilities. Since, in this case, the amount of resources like

registers might be limited by the compiler, we might loose performance again. Therefore, it

will probably be the best choice to re-compile the program when porting to another hardware

platform. This is, of course, a general problem and does not apply specifically to our raycaster.

Nevertheless, since a few years, a lot of work is invested in making the creation of efficient

CUDA programs easier ([KH10]). Within a few years, simple optimization tasks like loop

unrolling should be performed fully automatically by the CUDA compiler, and profiling tools

like NVIDIA’s Visual Profiler will be developed further to make performance optimization

for CUDA kernels even easier than it already is.

Besides that, using CUDA means, of course, that our raycaster will only run on NVIDIA

hardware. This could change within the next years, when OpenCL as a platform-independent

standard for parallel computing has become more mature. Since our concept is not relying

explicitely on special features provided by CUDA, it is probably possible to port the imple-

65

5.2 Limitations and Future Work 66

mentation to OpenCL in the future.

Our gradient computation scheme is another possible limitation of our CUDA program.

In contrast to [MRH10, OKK10], we are not using finite differences that have been computed

among neighbouring samples. Instead we are accumulating the gradient vector for each sample

in our slab cache, which either limits the slab cache to a very small size, like only two samples,

or makes it even completely useless. It is worth further investigation if we can improve the

performance of our approach, since we have not compared it to any other method yet. A

similar mechanism like the one used by [MRH10, OKK10] is not suited for our approach

because of several reasons: Estimating the gradient by taking neighbouring samples into

account would mean that we have to use a slab cache of at least three samples per ray in

order to be able to compute the finite differences. This slab cache for all rays has then

to be stored in shared memory , which will potentially limit its size. Furthermore, we will

need the ray bundles to overlap with each other, the rays at the border of each bundle will

then just be used for gradient computation. This will make our cell structure much more

complicated and less efficient. Still, it might be interesting to have a direct comparison of

our method of accumulated gradients with another method which consumes less memory per

thread. Such a method could involve a small slab depth of e.g. 4 samples, which would lead

to 4×16×16×3×4 bytes = 12KiB shared memory to store all accumulated gradients. This is

a huge amount of additional shared memory consumption, but still manageable and therefore

worth a comparison against our current method of storing the accumulated gradients in local

thread memory.

Another limitation is the amount of particles which our approach can handle. Since we

are keeping a map from cells to relevant particles in graphics memory, we can only handle

up to approximately 1 - 4 Million particles, depending on the amount of graphics memory

which is provided by the hardware. However, this is not a big problem at the moment, since

the original scope of our approach are interactive setups, where such particle sets are rather

uncommon at the moment.

Finally, we find that a hierarchical particle representation, as used by [OKK10, FAW10],

could also help us to speed up our raycaster. The creation of the coarser representations of

the particle set could be performed adaptively within our perspective grid: since we have

already aligned our access structure to the view frustum, we could limit the upsampling to

far regions inside the frustum.

Bibliography

[APKG07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. Adaptively

sampled particle fluids. In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07,

New York, NY, USA, 2007. ACM.

[BK02] Javier Bonet and Sivakumar Kulasegaram. A simplified approach to enhance the

performance of smooth particle hydrodynamics methods. Appl. Math. Comput.,

126(2-3):133–155, March 2002.

[Bli77] James F. Blinn. Models of light reflection for computer synthesized pictures. In

Proceedings of the 4th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’77, pages 192–198, New York, NY, USA, 1977. ACM.

[Bli94] James F. Blinn. Compositing, part 1: Theory. IEEE Comput. Graph. Appl.,

14(5):83–87, September 1994.

[CM99] Paul W Cleary and Joseph J Monaghan. Conduction modelling using smoothed

particle hydrodynamics. Journal of Computational Physics, 148(1):227 – 264,

1999.

[CMH+01] Balázs Csebfalvi, Lukas Mroz, Helwig Hauser, Andreas König, and Meister Ed-

uard Gröller. Fast visualization of object contours by non-photorealistic volume

rendering. Technical Report TR-186-2-01-09, Institute of Computer Graphics

and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186,

A-1040 Vienna, Austria, April 2001.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated vol-

ume rendering using hardware-accelerated pixel shading. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, HWWS

’01, pages 9–16, New York, NY, USA, 2001. ACM.

[FAW10] Roland Fraedrich, Stefan Auer, and Rudiger Westermann. Efficient high-quality

volume rendering of sph data. IEEE Transactions on Visualization and Com-

puter Graphics, 16(6):1533–1540, November 2010.

67

BIBLIOGRAPHY 68

[Gre10] Simon Green. Particle simulation using cuda. Whitepaper, NVIDIA Corpora-

tion, December 2010.

[Her94] M. Herant. Dirty tricks for sph. Memorie della Societa Astronomica Italiana,

65:1013+, 1994.

[HKRs+06] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel. Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA, USA,

2006.

[Hor70] Berthold K.P. Horn. Shape from shading: A method for obtaining the shape of a

smooth opaque object from one view. Technical report, Massachusetts Institute

of Technology, Cambridge, MA, USA, 1970.

[IABT11] Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. A

parallel sph implementation on multi-core cpus. Computer Graphics Forum,

30(1):99–112, 2011.

[KH10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-

sors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1st edition, 2010.

[KP+11] Ron Kikinis, Steve Pieper, et al. 3D Slicer 4.0, November 2011.

[KW03] J. Kruger and R. Westermann. Acceleration techniques for gpu-based volume

rendering. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS

’03, pages 38–, Washington, DC, USA, 2003. IEEE Computer Society.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’87, pages 163–169,

New York, NY, USA, 1987. ACM.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph.

Appl., 8(3):29–37, May 1988.

[Lev90] Marc Levoy. Efficient ray tracing of volume data. ACM Trans. Graph., 9(3):245–

261, July 1990.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp

factorization of the viewing transformation. In Proceedings of the 21st annual

conference on Computer graphics and interactive techniques, SIGGRAPH ’94,

pages 451–458, New York, NY, USA, 1994. ACM.

BIBLIOGRAPHY 69

[MGS+01] M. Meißner, S. Grimm, W. Straßer, J. Packer, and D. Latimer. Parallel volume

rendering on a single-chip simd architecture. In Proceedings of the IEEE 2001

symposium on parallel and large-data visualization and graphics, PVG ’01, pages

107–113, Piscataway, NJ, USA, 2001. IEEE Press.

[MHS08] L. Marsalek, A. Hauber, and P. Slusallek. High-speed volume ray casting with

cuda. In Proceedings of IEEE Symposium on Interactive Ray Tracing (2008),

page 185. IEEE, August 2008.

[Mon05] J J Monaghan. Smoothed particle hydrodynamics. Reports on Progress in

Physics, 68(8):1703, 2005.

[MRH10] Jörg Mensmann, Timo Ropinski, and Klaus H. Hinrichs. An advanced volume

raycasting technique using gpu stream processing. In GRAPP: International

Conference on Computer Graphics Theory and Applications, pages 190–198,

Angers, 2010. INSTICC Press.

[MSRMH09] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus Hinrichs.

Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based Volume Vi-

sualizations. IEEE Computer Graphics and Applications, 29(6):6–13, 2009.

[NVI11] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2011. Version

4.1.

[OKK09] Jens Orthmann, Maik Keller, and Andreas Kolb. Integrating gpgpu functional-

ity into scene graphs. In VMV, pages 233–244. DNB, 2009.

[OKK10] Jens Orthmann, Maik Keller, and Andreas Kolb. Topology-caching for dynamic

particle volume raycasting. In Proceedings of Vision, Modeling and Visualiza-

tion, pages 147–154, Siegen, Germany, 2010.

[OLG+07] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron Lefohn, and Timothy J. Purcell. A survey of general-purpose computa-

tion on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Commun.

ACM, 18(6):311–317, June 1975.

[RE01] Penny Rheingans and David Ebert. Volume illustration: Nonphotorealistic ren-

dering of volume models. IEEE Transactions on Visualization and Computer

Graphics, 7(3):253–264, July 2001.

[RGW+03] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolfgang

Strasser. Smart hardware-accelerated volume rendering. In Proceedings of the

BIBLIOGRAPHY 70

symposium on Data visualisation 2003, VISSYM ’03, pages 231–238, Aire-la-

Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[SDG08] George Stantchev, William Dorland, and Nail Gumerov. Fast parallel particle-

to-grid interpolation for plasma pic simulations on the gpu. J. Parallel Distrib.

Comput., 68(10):1339–1349, October 2008.

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan

primitives for gpu computing. In Graphics Hardware 2007, pages 97–106. ACM,

August 2007.

[SKB+06] Magnus Strengert, Thomas Klein, Ralf P. Botchen, Simon Stegmaier, Min Chen,

and Thomas Ertl. Spectral volume rendering using gpu-based raycasting. The

Visual Computer, pages 550–561, 2006.

[YT10] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-based fluids using

anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’10, pages 217–225, Aire-la-Ville,

Switzerland, 2010. Eurographics Association.

[YTWJ12] Jihun Yu, Greg Turk, Chris Wojtan, and Chee Jap. Reconstructing surfaces of

particle-based fluids using anisotropic kernels. In Proceedings of the 33rd Annual

Conference of the European Association for Computer Graphics (Eurographics)

(to be published, Aire-la-Ville, Switzerland, 2012. Eurographics Association.

[ZGHG11] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Data-parallel octrees

for surface reconstruction. IEEE Transactions on Visualization and Computer

Graphics, 17(5):669–681, May 2011.

[ZSP08] Yanci Zhang, Barbara Solenthaler, and Renato Pajarola. Adaptive sampling

and rendering of fluids on the GPU. In Proceedings Eurographics/IEEE VGTC

Symposium on Point-Based Graphics, pages 137–146, 2008.

