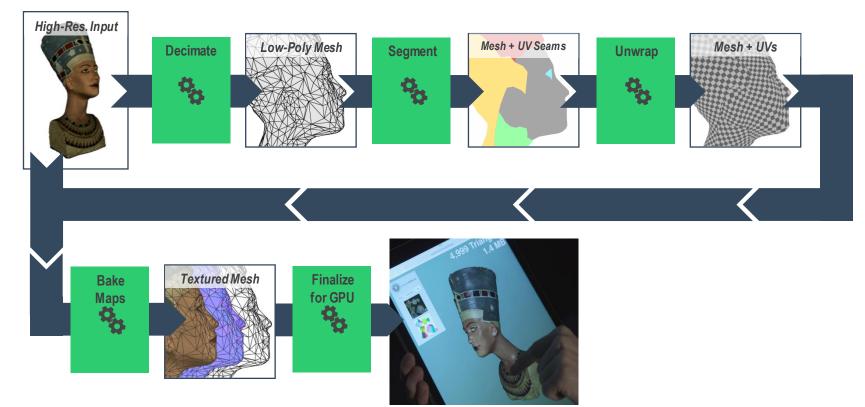

# gITF 2.0 Export in InstantUV



Max Limper | Fraunhofer IGD


@mlimper\_cg



IGD

## **Context: InstantUV 3D Scan Optimization**

**Original 3D Scan** 



Web-ready 3D Model



# **Export Format?**

- Must support different texture maps
  - Albedo
  - Normals
  - Occlusion
  - Metallic
  - Roughness
- Must be compact & fast to load (min. processing)
- Must align well with Web technologies
- Must be open (well-specified, no proprietary SDK)



Web-ready 3D Model



# gITF 2.0 – Choose Your Renderer

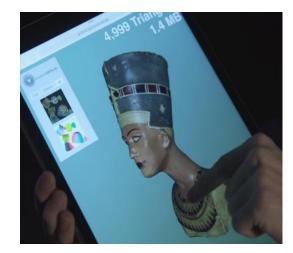




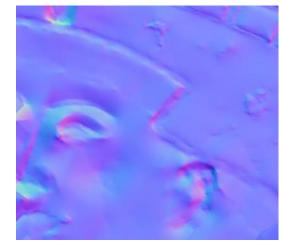


Web-ready 3D Model






 $\bullet \bullet \bullet$ 




# The Devil is in the Details

- "Ready to Render" = Everything must be well-defined
- Example: Tangent Space Normal Maps
  - UV Origin?
  - Tangent Spaces?
  - Handedness?
  - Possible Flipping of Components from Texture?
- gITF specifies <u>everything</u> (in constrast to OBJ)!



Web-ready 3D Model







## **Example: Tangent Space Normal Maps**

InstantUV Export to Sketchfab, Default Parameters, MatCap Rendering



OBJ Version (Y Flipped)

#### glTF Version





### Takeaways

- glTF 2.0 is our choice for ready-to-render 3D export
- Great progress and massive adaption with gITF 2.0
- Enabled us to serve different renderers without much effort

