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Abstract

We investigate global registration methods for Nominal/Actual comparisons, using precise, high-resolution 3D scans. First
we summarize existing approaches and requirements for this field of application. We then demonstrate that a basic RANSAC
strategy, along with a slightly modified version of basic building blocks, can lead to a high global registration performance
at moderate registration times. Specifically, we introduce a simple feedback loop that exploits the fast convergence of the ICP
algorithm to efficiently speed up the search for a valid global alignment. Using the example of 3D printed parts and range
images acquired by two different high-precision 3D scanners for quality control, we show that our method can be efficiently
used for Nominal/Actual comparison. For this scenario, the proposed algorithm significantly outperforms the current state of
the art, with regards to registration time and success rate.
CCS Concepts
• Computing methodologies → Reconstruction; Matching; Mesh models;

(a) Input Scan (b) SUPER 4PCS, 1.67s (c) Our method, 1.29s

(d) Input Scan (e) SUPER 4PCS, 59.85s (f) Our method, 3.26s

Figure 1: Registration of range images for Nominal/Actual com-
parison. Using existing building blocks, we propose a new method
for global registration that achieves high success rates and fast
registration, even for challenging input data. Our study uses real-
world data from different high-end industrial scanners (top row:
structured light scanner, bottom row: handheld laser scanner).

1. Introduction

Registration of 3D scans against a reference model is a topic which
has been extensively studied within the past [BM92,RL01,PLH04].
One important use case is Nominal/Actual comparison. The aim is
to assess deviations from the original CAD model, which might
have occurred during manufacturing. Being able to use only a sin-
gle range image for this purpose, or at least just a few ones, is an
important requirement in practice. Often, deviations should be mea-
sured on just one specific part of an object during the evaluation
process. To keep processing times at a reasonable level, it is cru-
cial to avoid the necessity to reconstruct the whole surface, as 3D
scanning is usually a time-consuming step. By aligning a single
range image and the CAD model in a common coordinate system,

distances between both data sets can be efficiently measured and
visualized. However, computing an alignment, also referred to as
registration, reliably and in a fully automatic fashion is a hard task.
Typical problems include parameters that need to be tweaked by
hand, excessive computation times, as well as the automatic assess-
ment of the quality of the resulting registration. Moreover, many
global alignment methods cannot deal with partial data. For these
reasons, professional software packages do usually not provide au-
tomatic alignment methods, but provide user-assisted methods as a
first choice. One possible workflow consists in the manual selec-
tion of three or more roughly corresponding points in each of the
data sets (as available in open source software such as Meshlab or
CloudCompare, for example). Other possibilities are the selection
of two points with normals, or the selection of a single correspond-
ing point under similar viewing angles onto both models. Given
such global constraints from the user, the alignment problem re-
duces to a local registration, which can be solved fast and efficiently
using one of the variants of the well-known Iterative Closest Point
(ICP) method [RL01].

Within this paper, we first summarize relevant approaches for
Range Image to CAD registration in the context of Nominal/Actual
comparison. We then demonstrate that a basic RANSAC strategy
with some modifications is able to significantly outperform the state
of the art with respect to global registration time and success rate.
Using data from two different high-precision industrial scanners,
we demonstrate the utility of the proposed method for the use case
of fully-automatic alignment of 3D scans and CAD data for Nomi-
nal/Actual comparison, using the example of 3D printing.

Our main contribution is an efficient and robust solution of the
global registration problem based on a basic RANSAC strategy,
which even works well with partial scans and structureless sur-
faces. In contrast to previous work, our approach only asks the user
for a single input parameter (δH ), which is needed in principle to
distinguish between possible registration artifacts from true devi-
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ations that occurred during manufacturing. Furthermore, we intro-
duce a simple feedback loop for global alignment by incorporating
the ICP algorithm directly into the computation of a global align-
ment. Thanks to the quick error minimization of the ICP method,
this approach allows us to efficiently discard global alignments that
would otherwise result in wrong transformations. As one of our key
findings, we show that this is especially important in order to cope
with shortcomings of the commonly used Largest Common Point
Set (LCP) measure. We demonstrate the applicability of our ap-
proach and its high efficiency by comparing it against the state-of-
the-art methods, using high-precision range images that have been
acquired from 3D-printed models as a possible use case for nomi-
nal/actual comparison.

2. Local Alignment Methods

The de facto standard local method for computing a precise
alignment is the Iterative Closest Point (ICP) algorithm [CM92,
BM92]. Rusinkiewicz and Levoy presented variants of the original
method and optimized configurations for fast convergence [RL01].
Pottmann et al. presented a method that can be regarded as an al-
ternative to ICP which is based on instantaneous kinematics and
quadratic approximants of the squared distance function to a sur-
face [PLH04]. Low presented a fast point-to-plane distance mini-
mization method, which allows for a significant speedup of the ICP
method [lL04]. Pottmann et al. analyzed the convergence properties
of ICP more in detail [PHYH06]. Pointing out that ICP converges
only slowly if the optimization runs through tangential moves along
the surface, they propose alternatives with better convergence be-
havior. All of the mentioned methods for local registration have
in common that they need a good rough alignment as initializa-
tion. If this alignment is not of sufficient quality, the local align-
ment step might converge into a wrong local minimum, producing a
wrong result. Another common difficulty is the sensitivity to miss-
ing data or outliers. Most of the methods have several parameters to
tune, which may be difficult with varying data quality. Therefore,
Bouaziz et al. presented a new variant of the ICP algorithm, called
Sparse ICP [BTP13]. Within they describe an algorithm that opti-
mizes the registration by using sparsity inducing norms for noisy
data sets.

3. Global Alignment Methods

Algorithms. Finding a rough, global alignment of two 3D objects
for later local alignment via ICP or similar methods is a problem
that has been extensively studied within the past. A basic approach
is to simply align object centroids of both models, which solves the
translational part of the global alignment. The rotation can then be
determined in various ways, for example by performing a Principal
Component Analysis (PCA) and trying different alignments of the
resulting axes of both data sets [LR09]. However, such approaches
do typically not work with partial scans because the principal com-
ponent may differ between two scans. Drost et al. presented a global
description based on oriented point pairs [DUNI10]. Similar fea-
tures on the model are grouped together, which allows to use a
sparse representation of the point data. More recently, Birdal and
Ilic presented a revised version of the framework, enhancing the
pose retrieval by using segmentation and per-segment pose estima-
tion, supported by an occlusion-aware ranking scheme. [BI15]. An-
other solution is provided by RANSAC-based methods. One exam-
ple is the DARCES approach of Chen et al. [CHC99]. Their method
searches similar triangles in both point data sets and computes a
corresponding rigid transformation to obtain a candidate alignment,
which is then ranked using the LCP metric. As will be shown within
Section 4.2, our basic approach for global registration is closely
related to this method, but contains an additional stage of quick

Figure 2: General overview over Nominal/Actual comparison. A
part, manufactured from CAD, will be scanned and compared
against its CAD by aligning the scanned data without noise and
outlieres onto the CAD data. Thus the deviation can be visualized.

(a) LCP=0.76 (b) LCP=0.39

Figure 3: Problems of using a pure LCP-based approach. The con-
figuration on the left has a relatively high LCP value. However, it
will converge to an incorrect result after local refinement (ICP). In
contrast, the result on the right converges to the global optimum in
just 14 iterations, although the initial LCP value is rather low.

intermediate validation via ICP. Zhou et al. presented Fast Global
Registration (FGR) as a method for efficient alignment of partially
overlapping 3D surfaces [ZPK16]. This algorithm optimizes be-
tween a candidate set on each surface, based on Fast Point Feature
Histograms (FPFH) [RBB09] for each candidate, without updat-
ing these correspondences. Therefore, the algorithm is able to deal
with noisy correspondences and so with noisy datasets. Aiger et al.
presented 4-Point Congruent Sets (4PCS), a method for efficient
global alignment of partial 3D scans [AMCO08]. The algorithm
exploits geometric properties which are invariant against transfor-
mation, described as congruent points. The method is robust against
noise and outliers and has shown good results on a variety of data
sets. However, in the worst case, it has a quadratic complexity in
the number of sampled points. Mellado et al. have significantly im-
proved the 4PCS approach by proposing an advanced variant, en-
titled SUPER 4PCS, that uses a smart indexing scheme [MAM14].
Yang et al. presented the Go-ICP method, which combines local
and global alignment strategies in order to find a global optimum
of the L2 error metric used by ICP [YLCJ16]. Since the standard
ICP algorithm may get stuck converging into local optima, their
method uses a global branch-and-bound strategy over the domain
of rigid transformations in order to compute different global align-
ments, which are then locally refined via ICP. Alternating between
these stages, a global minimum can be found, and, as the authors
state, the algorithm can hence be used as an optimality benchmark.
For case studies like ours, it could be interesting to use Go-ICP to
generate ground truth data, where no such data is available. Within
our evaluation, we compare the results of our algorithm for global
alignment to the ones generated by SUPER 4PCS and FGR, using
semi-manually generated ground truth alignments.

Measuring Metrics. The most popular metric for measuring
which candidate transformation should be considered the best one
is the Largest Common Point Set (LCP) [ATT97]. The value of
this metric will always be a real number within the interval [0,1],
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Figure 4: Our framework. Our global alignment algorithm includes a quick ICP stage in order to quickly evaluate whether a given candidate
transformation should be regarded as an acceptable result. The quick ICP stage is only executed if the result already has a minimum quality.

measuring the amount of overlap that was detected between both
data sets. To measure the LCP value for two roughly aligned sets of
points P and Q, a threshold δLCP is used for the distance between
corresponding points pi and qi, where qi is the nearest neighbor
of pi. The threshold δLCP distinguishes points that are regarded as
close points on the one hand, meaning that a local overlap exists,
and distant points on the other hand, meaning that there is no local
overlap between the data sets. The overall LCP is then simply the
ratio between the amount of close points and the overall amount of
points:

LCP(P,Q) =
|{pi ∈ P :‖pi−qi‖< δLCP}|

|P| (1)

While this measure is easy to compute and produces good results
for many cases, we found that a pure LCP-based optimization of the
global alignment may also lead to some undesired results. Problems
can arise in both directions: On the one hand, a high LCP value
does not always guarantee that a good solution has been found. On
the other hand, a low LCP may produce better results than another
initialization with higher LCP. Two examples illustrating this prob-
lem are shown in Fig. 3. Because of such issues, our method does
not solely rely on LCP to judge whether a candidate transformation
should be considered as the best one.

Of course, other methods such as the one of Huttenlocher and
Kedam can be used, which calculates the minimum Hausdorff dis-
tance between two point sets under translation [HK90]. The Haus-
dorff distance is defined as the largest value out of the closest dis-
tance values of all points of one data set, as measured towards the
other surface [AScE02].

4. Overview of our Nominal/Actual Comparison Framework

During manufacturing processes it may be essential to compare the
manufactured parts against their CAD data for quality control, as
shown in Fig. 2. In order to detect subtle real-world deviations, it
is not sufficient to use low-end 3D reconstrution pipelines (such
as the Microsoft Kinect, for example). Instead, a precision in the
sub-millimeter range is required, and outliers may not exist in the
data that is used for Nominal/Actual comparison. Therefore, only
high-precision scan systems are able to produce the expected data
quality. Apart from assuming that we operate on this kind of data,
we furthermore assume that the partial scans do not contain any
other objects than the ones we are having inside the CAD data (i.e.,
no surroundings have been captured during scanning).

A basic overview of our approach is shown in Fig. 4. It mainly
consists of four stages: First, during the initial setup stage, we per-
form a sampling of the input data sets and estimate parameters of
the global alignment algorithm. The main RANSAC loop for global
alignment then samples the space of all possible transformations.
We do so using random triangle pair alignments on both point data
sets, in order to obtain candidate transformations for a coarse align-
ment. This frequently reoccurring step is supported by intermedi-
ate executions of the ICP algorithm (the Quick ICP stage), in cases

Figure 5: Random samples on the specimen block CAD model.

where a candidate transformation has been rated as a potential suc-
cess candidate. The RANSAC loop terminates as soon as the quick
ICP validation of a candidate transformation was successful, or as
soon as the given time budget has been fully exhausted. During the
final stage, we perform a more precise local alignment via ICP and
classify the result, using the Hausdorff distance calculated from the
scan to the CAD model.

The following sections describe the mentioned stages of the
pipeline more in detail.

4.1. Sampling and Parameter Estimation

As high-precision range scans can be complex data sets, consisting
of many thousands or even millions of points, we have to reduce
the amount of data in order to perform an efficient registration. Ex-
isting algorithms typically reduce the amount of points for global
alignment and local alignment stages to just a few hundred, or, at
maximum, a very few thousand samples (cf. [RL01,MAM14]). For
the high-resolution input range images, which are typically very
dense, we have found that a straightforward random sampling al-
ready gave results of sufficient quality - although other strategies,
such as Poisson disc sampling, are clearly possible [Bri07]. For
CAD reference models, a bit more effort is necessary to obtain
reasonable results. Since the tessellation might be highly irregular,
simply subsampling the existing vertices is not sufficient. There-
fore, we first employ a stratified triangle sampling to create a uni-
form, high-resolution point cloud on the CAD surface. To do so, we
subdivide each triangle temporarily into smaller ones and then gen-
erate random samples within the resulting triangles, using the sim-
ple scheme of Turk [Tur90]. Fig. 5 shows an example. Although our
CAD models always consisted of triangulated meshes, it is worth
noting at this point that similar point sampling strategies are pos-
sible for parametric surface data. From this high-resolution point
sampling, we can then simply draw subsamples in the same fash-
ion as for the range image data. Note that this process allows us
to work with two point data sets, which is a more common input
for most algorithms and, especially, allows for faster sampling (and
hence more candidate evaluations) than more sophisticated strate-
gies, such as computing precise point-to-mesh distances.

In order to efficiently decide whether we should perform a quick
run of the ICP method, we have to be able to judge the qual-
ity of a candidate transformation that was computed during the
RANSAC loop. Like most other methods, we use the popular LCP
metric for this purpose, which can be efficiently computed and
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leads to a good rough classification of the candidate transforma-
tions (cf. [CHC99, AMCO08, MAM14]). However, we have found
that the LCP metric might, in general, not always lead to a consis-
tent ranking of candidates, regarding their usability as a final so-
lution (cf. Fig. 3). We therefore used a fixed, low LCP threshold
LCPmin to decide for each candidate whether the quick ICP stage
should be entered or not (the final value used for our experiments
was LCPmin = 0.3). To compute the LCP value for a given candi-
date transformation, we need to find the closest sample point on
the CAD reference model, for each sample within the transformed
range image, which we do using a k-d tree. We then measure the
Euclidean distance between both points and check whether it falls
below the LCP delta value δLCP (see Sec. 3). As the concrete value
of δLCP should depend on the scale and density of the input data,
we compute this value during the setup stage, using the average
distance of each point to the closest neighbor within the sampled
point data sets of the scans.

Besides δLCP, which is computed automatically, another param-
eter is needed to determine whether a good result has been obtained
through the quick ICP stage, meaning that the global alignment pro-
cedure was successful and can be terminated. We use the Hausdorff
distance for this purpose, comparing against a threshold δH that
specifies the maximum allowed distance between both surfaces.
This is the only parameter of our method that must be provided
by the user. In contrast to other parameters, such as ICP, it is intu-
itively easy to grasp: δH simply measures which real-world devia-
tions should be expected and tolerated, and which ones should be
regarded as registration errors. It is worth noting at this point that
this distinction is in every case necessary, since any registration al-
gorithm used for quality control must be able to tolerate real-world
deviations (which we want to detect after registration), but should
not produce registration errors.

4.2. RANSAC-Based Global Alignment
Our global alignment procedure consists of two stages: the com-
putation and testing of a candidate transformation, and a quick
ICP evaluation of the result (if the result already had an LCP
value exceeding LCPmin). To obtain a candidate transformation, we
use a straightforward approach, which is similar in spirit to the
RANSAC-based DARCES method of Chen et al. [CHC99]. We
search three different points from the sampled range image which
form a roughly equilateral triangle. The desired side length, which
also determines the search radius, is computed in a similar fash-
ion as the LCP delta value δLCP. This triangle, also referred to as
the base, is then matched against several candidate triangles on the
sparse point samples of the CAD reference model. Instead of us-
ing all possible candidates, we limit the search to a fixed maximum
number of nc candidates that are evaluated before a new base is se-
lected (for our evaluation, we used nc = 100). The transformation
between the base triangle and each of the candidate triangles is then
computed using an SVD. During this step, we also recognize and
fix mirroring transformations as described by Eggert et al., using
the determinant of the rotation component [ELF97].

4.3. Quick ICP Evaluation
Having a candidate transformation at hand, computed using
RANSAC-based global alignment, we compute the LCP and ex-
ecute the quick ICP stage, if the LCP is equal or greater than the
threshold LCPmin. The purpose of the quick ICP evaluation is to
detect whether the local alignment algorithm is converging against
a local minimum. For this process, just a very few iterations of ICP
are necessary, as we do not aim for perfect alignment at this point.
Our ICP implementation is based on the fast variant of Low, but any
fast local alignment algorithm could be used at this point [lL04].

Figure 6: Three of the printed objects used for evaluation. From left
to right: Mechanical Part 1, Mechanical Part 2, Specimen Block.

During the quick ICP stage, we check if the ICP algorithm success-
fully converged. If this was not the case, we regard the result of
this stage as not successful and proceed with the testing of the next
candidate transformation.

The global alignment and quick ICP stages are frequently exe-
cuted until the quick ICP stage detects that a result has a sufficient
quality, measured via the Hausdorff distance (see previous section).

4.4. Local Alignment and Validation

As soon as the global alignment procedure has terminated (either
because a good transformation was found, or because the time bud-
get was fully exhausted), we perform a final local alignment via
ICP. At this stage, we allow for a higher number of iterations and
use a stricter convergence criterion. The final result is then again
checked against the maximum allowed Hausdorff distance δH , try-
ing to classify whether the registration procedure was successful or
not.

5. Results

Within this section, we present experimental results of our algo-
rithm, measured on a variety of real-world data sets. We also dis-
cuss Nominal/Actual comparison as an application and highlight
current limitations.

5.1. Experimental Setup

Range images used for our evaluation have been obtained from
3D printed models, which contain several typical artifacts that may
arise during the layered manufacturing process. In order to detect
subtle real-world deviations, a precision in the sub-millimeter range
is required, and outliers may not exist in the data that is used for
Nominal/Actual comparison. Therefore, we have used two differ-
ent, high-precision scanning devices for quality control: a ZEISS
T-SCAN hand-held laser scanner and a ZEISS COMET structured
light scanner. The results do not contain significant noise or out-
liers. However, we performed an automatic initial cleanup in order
to remove tiny, isolated pieces, which were present in the results
from the COMET and resulted from parts of the turntable being
scanned along with the model.

The objects used for evaluation are a CAD model of a block-
shaped specimen with different geometrical features, two differ-
ent mechanical parts, the well-known model of the Utah Teapot,
and two famous models from the Stanford archive (Bunny and Ar-
madillo). Some of the printed objects are shown in Fig. 6. Each
object has been scanned from several directions, with both of the
mentioned scanning devices. Fig. 8 shows some examples of the
resulting range images.

Printers used were a Makerbot Replicator (Bunny, Armadillo
and Teapot) and a Big Builder Dual-Feed (Mech. Parts and Speci-
men Block). For all objects, white PLA was used as a material, and
the size of the printed objects was up to 20cm within each spatial
dimension. The specimen block shown in Fig. 6, for example, has
a size of 12cm×8.3cm×0.5cm
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Figure 7: Registration success rate, measured as percentage of runs that achieved the correct result (the manually generated ground truth).

5.2. Performance Evaluation

For our experiments, we used 6 different models, scanned with 2
different devices, resulting in 12 different data sets, each consist-
ing of multiple scans. We first selected a representative subset of
4 scans for each of those data sets, which resulted in 48 different
range images. For each of those range images, we created a cor-
rect alignment, using our automated method and additional manual
alignment steps where it was necessary. We used the user-guided
global alignment functionality of the open-source Cloud Compare
software for this purpose. Based on this ground truth, we are able to
evaluate the success rate of any global registration method by com-
paring the residuum of the respective transformations after the final
local alignment stage, using the Frobenius norm of the difference
matrix.

In order to obtain representative results, we executed, for each of
the methods tested, each registration test on each of the 48 range
images 6 times. From the 6×4 test runs for each data set, we then
computed the minimum, maximum and average success rate and
running time.

The results from our experimental evaluation are shown in Fig. 7
and Table 1. For the SUPER4PCS and FGR methods, we have used
the publicly available code and provided it with the same time bud-
get as our algorithm (60s). As an LCP threshold for earlier ter-
mination of SUPER4PCS, we used 0.9, which provided the best
results. While our algorithm used 2000 samples on each data set
throughout, we discovered that SUPER 4PCS performs worse in
this case, as the computational costs per sample are higher than for
our method. We therefore left the initial setting of 200 samples per
data set. The chart and table show, for each of the three methods
and for each data set, the success rate (measured after a final ICP
alignment, using the ground truth transformations as a reference),
as well as execution times and LCP value after global alignment.

For the FGR method we used the example application provided,
with the suggested radius r = 0.1. As the computation time of FGR
and FPFH grows linearly with the number of points for each seg-
ment, we reduced the amount of data points to 10.000.

As can be seen, our method is able to successfully register, on
average, 69% of the input scans. The average time needed for regis-
tration was 15 seconds. Compared with the SUPER 4PCS method,
which has a success rate of 49% and needs 45 seconds on average,
we achieve a significant improvement in registration performance.
FGR achieved a success rate of 30% with only 2 seconds on aver-
age, so we doubled the success rate with our approach.

While the final LCP value after global alignment is typically
higher than for our method, SUPER 4PCS as well as FGR does not
check if a result is plausible, leading to output that potentially has
a high overlap, but might not be successfully registered (cf. Fig. 3).
This illustrates that the correlation between a high LCP value and

Figure 8: Partial scans from the printed Stanford Bunny, as used
for our experiments. Top row: Structured light scanner (ZEISS
COMET). Bottom row: Handheld laser scanner (ZEISS T-SCAN).

a good success rate after the final, local alignment is not as strong
as one might expect.

It is also interesting to see that the SUPER 4PCS method per-
forms equally well as our method on the Armadillo COMET and
Bunny COMET data sets. These scans contain large surface parts
and a lot of surface features (cf. Fig. 8). In contrast to the Bunny and
Armadillo, the CAD objects have significantly less surface struc-
ture, more symmetries, and slippable surface parts. The authors of
the original 4PCS method have already reported suboptimal re-
sults for such types of data, and we can confirm this finding (cf.
also Fig. 1) [AMCO08]. Similarly FGR performs much better on
the datasets produced with COMET, for some cases, even better
than SUPER 4PCS. However, while the method is very fast, it is
the least robust among the three evaluated methods.

Results acquired with the handheld T-Scan system are in most
cases more difficult to register for both of the evaluated methods
than range images from the COMET structured light scanner. We
believe that this is mainly due to the difference regarding the av-
erage surface area covered within one scan (cf. Fig. 8). In contrast
to the COMET, results produced by the T-SCAN system are harder
to match against the CAD model as they potentially contain less
significant features, and therefore more ambiguity. Fig. 1 shows
examples from the Teapot data sets. Here, the COMET data has
much more features and covers a much larger area of the surface.
It is therefore easy to match within a very few seconds, for both
methods. In contrast, the T-SCAN data consists of a much smaller
part of the surface, which is harder to match against the reference
model.

We have also evaluated the precision of our classification of re-
sults, based on the Hausdorff distance. After the final ICP stage,
we added an additional Hausdorff check, comparing the predicted
classification of the result (successfully registered / not success-
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OUR APPROACH
Data Set Success Rate Avg. LCP (Min./Max LCP) Avg. Time (Min./Max. Time)
Armadillo (COMET) 100.00% 0.51 (0.41/0.88) 6.61s (0.22s / 25.65s)
Armadillo (T-Scan) 83.33% 0.55 (0.42/0.93) 24.86s (0.16s / 60.00s)
Block (COMET) 75.00% 0.70 (0.45/0.88) 1.99s (0.25s / 6.26s)
Block (T-Scan) 70.83% 0.78 (0.46/0.97) 8.81s (0.62s / 60.00s)
Bunny (COMET) 75.00% 0.52 (0.41/0.76) 18.08s (0.95s / 60.00s)
Bunny (T-Scan) 50.00% 0.59 (0.42/1.00) 23.44s (0.07s / 60.00s)
Mech. 1 (COMET) 75.00% 0.68 (0.46/0.94) 4.66s (0.12s / 25.17s)
Mech. 1 (T-Scan) 45.83% 0.63 (0.40/0.99) 19.54s (0.11s / 60.00s)
Mech. 2 (COMET) 54.17% 0.66 (0.46/0.96) 22.83s (1.56s / 60.00s)
Mech. 2 (T-Scan) 33.33% 0.67 (0.46/0.97) 33.27s (2.40s / 60.00s)
Teapot (COMET) 100.00% 0.71 (0.49/1.00) 3.40s (0.07s / 16.53s)
Teapot (T-Scan) 70.83% 0.72 (0.43/0.99) 15.69s (0.07s / 60.00s)
Total 69.44% 0.64 (0.40/1.00) 15.26s (0.07s / 60.00s)

SUPER 4PCS [MAM14]
Data Set Success Rate Avg. LCP (Min./Max LCP) Avg. Time (Min./Max. Time)
Armadillo (COMET) 100.00% 0.97 (0.88/1.00) 2.00s (0.32s / 7.51s)
Armadillo (T-Scan) 70.83% 0.72 (0.24/0.99) 45.15s (0.25s / 59.54s)
Block (COMET) 62.50% 0.89 (0.68/1.00) 59.89s (59.71s / 60.00s)
Block (T-Scan) 16.67% 0.62 (0.21/0.99) 59.90s (59.62s / 60.00s)
Bunny (COMET) 75.00% 0.98 (0.95/1.00) 2.15s (0.36s / 6.15s)
Bunny (T-Scan) 12.50% 0.49 (0.23/0.94) 59.53s (59.45s / 59.74s)
Mech. 1 (COMET) 33.33% 0.93 (0.86/1.00) 59.74s (59.62s / 60.00s)
Mech. 1 (T-Scan) 25.00% 0.76 (0.32/1.00) 59.67s (59.48s / 60.00s)
Mech. 2 (COMET) 50.00% 0.93 (0.70/1.00) 59.65s (59.48s / 60.00s)
Mech. 2 (T-Scan) 16.67% 0.51 (0.00/0.87) 59.56s (59.48s / 60.00s)
Teapot (COMET) 75.00% 0.83 (0.27/1.00) 21.85s (0.68s / 60.00s)
Teapot (T-Scan) 45.83% 0.65 (0.00/1.00) 45.01s (0.24s / 59.70s)
Total 48.61% 0.77 (0.00/1.00) 44.51s (0.24s / 60.00s)

FAST GLOBAL REGISTRATION [ZPK16]
Data Set Success Rate Avg. LCP (Min./Max LCP) Avg. Time (Min./Max. Time)
Armadillo (COMET) 33.33% 0.27 (0.04/0.67) 2.49s (1.71s / 3.26s)
Armadillo (T-Scan) 20.83% 0.21 (0.04/0.59) 2.71s (1.80s / 3.34s)
Block (COMET) 75.00% 0.49 (0.36/0.61) 1.48s (1.29s / 1.78s)
Block (T-Scan) 25.00% 0.59 (0.43/0.84) 2.37s (1.38s / 3.35s)
Bunny (COMET) 29.17% 0.50 (0.12/1.00) 1.47s (1.36s / 1.71s)
Bunny (T-Scan) 0.00% 0.15 (0.04/0.34) 1.38s (0.88s / 2.06s)
Mech. 1 (COMET) 37.50% 0.22 (0.08/0.89) 2.23s (1.98s / 2.51s)
Mech. 1 (T-Scan) 25.00% 0.13 (0.09/0.17) 1.54s (0.77s / 2.74s)
Mech. 2 (COMET) 25.00% 0.27 (0.13/0.51) 2.22s (1.62s / 2.95s)
Mech. 2 (T-Scan) 0.00% 0.21 (0.01/0.52) 3.83s (3.03s / 4.72s)
Teapot (COMET) 79.17% 0.42 (0.10/0.99) 1.28s (1.20s / 1.40s)
Teapot (T-Scan) 8.33% 0.08 (0.00/0.27) 0.93s (0.60s / 1.25s)
Total 29.86% 0.29 (0.00/1.00) 1.99s (0.60s / 4.72s)

Table 1: Experimental results for our approach and for the SUPER 4PCS and FGR method. We evaluated all methods on scans of 6 different
printed objects. For each model, 8 range images were evaluated (4 for each of the two scanning devices used). To ensure representative
results, each of the 48 scans was tested 6 times with each of the algorithms. In addition to success rate and timings, we show LCP values that
have been computed after the global alignment stage. Results demonstrate that a high LCP value does not directly imply a high success rate.

fully registered) to the ground truth from manual registration. For
our example use case of assessing the quality of 3D printed mod-
els, which have been manufactured at a scale of 5cm to 15cm side
length (bounding box), we found that a maximum allowed devia-
tion of 3mm worked best. Table 2 shows the results. As can be seen,
our classification using the Hausdorff distance is even slightly more
reliable than a classification via LCP, although the difference (es-
pecially in false negative rate) seems not to be significant.

5.3. Error Visualization

Using the registered range images, we were able to perform Nom-
inal/Actual comparisons on the data sets, in order to assess devi-
ations that occured during the printing process. To visualize de-
viations, we have chosen to measure the distance of each data
point within the range image to the CAD surface. This was quickly
and efficiently done by casting rays following the surface nor-
mals, in both directions. Clearly, different methods are possible,
all coming with different advantages and disadvantages (consider

Scan Method succ. rate
(gr. truth)

FPR / FNR
(Hausdorff)

FPR / FNR
(LCP)

Armadillo (COMET) 1.00 0.00 / 0.00 0.00 / 0.00
Armadillo (T-Scan) 0.83 0.00 / 0.00 0.00 / 0.00
Block (COMET) 0.75 0.00 / 0.25 0.00 / 0.00
Block (T-Scan) 0.70 0.57 / 0.00 0.17 / 0.06
Bunny (COMET) 0.75 0.00 / 0.10 0.00 / 0.00
Bunny (T-Scan) 0.50 0.00 / 0.33 0.00 / 0.00
Mech. 1 (COMET) 0.75 0.50 / 0.00 0.75 / 0.10
Mech. 1 (T-Scan) 0.45 0.54 / 0.00 0.64 / 0.15
Mech. 2 (COMET) 0.54 0.17 / 0.28 1.00 / 0.22
Mech. 2 (T-Scan) 0.33 0.25 / 0.00 0.40 / 0.43
Teapot (COMET) 1.00 0.00 / 0.00 0.00 / 0.00
Teapot (T-Scan) 0.70 0.00 / 0.00 0.00 / 0.15
Total 0.69 0.28 / 0.09 0.33 / 0.08

Table 2: Classification performance for our validation method us-
ing the Hausdorff distance, compared to an LCP-based approach.
A lower false positive rate (FPR) is achieved by the Hausdorff dis-
tance, with nearly similar false negative rate (FNR) as LCP.
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for example the recent work of Getto et al. for more advanced ap-
proach [GKL15]) In principle, any method that produces signed
distance values at each data point can be employed at this point.
To visualize the signed distance values, we used a common color
mapping with a rainbow-like transfer function. While the use of
this function has been criticized for various reasons, we found it
well-suited in this case, since our deviation is not a unipolar scale
(low vs. high), but a bipolar one (cf. [BTI07]).

Fig. 9 shows some examples, illustrating different kinds of er-
rors that arised from the layered manufacturing process. As can be
seen from these test cases, we can efficiently detect and visualize
several forms of deviation from the reference model, such as ring-
ing artifacts, small knobs on the surface or bending of parts of the
model. The latter effect can be especially observed for objects that
have a large base area, which will be printed as the first few lay-
ers. In such cases, the hot, freshly printed material cooling down
after its contact with the base plate of the printer leads to bending
of those regions. A practical solution to cope with this problem is,
for example, to use a printer with a heatable plate instead.

5.4. Limitations

While our method performs much better for surfaces with less
structure, such as the mechanical parts, it should also be noted that
we are, on the other hand, not able to robustly handle noisy data.
This is especially true for distant outliers, which do not permit to
use our validation method based on the Hausdorff distance. We did
not find this a problem for our main use case of Nominal/Actual
comparison, using high-precision range data: here, any additional
noise from the scanning process could not be distinguished from
actual deviations (cf. Fig. 9), therefore noisy scans are generally not
found to be useful for quality control. However, the ability to deal
with noisy scans, as very successfully demonstrated for the 4PCS
/ SUPER 4PCS and FGR methods, is an important requirement
in a lot of other scenarios, such as registration of partially overlap-
ping, noisy range images. We therefore conclude that our algorithm
is well-suited for Nominal/Actual comparisons, especially of me-
chanical parts, while other methods are better at dealing with noisy
data.

Another, basic registration problem, which our algorithm inher-
its from the basic rigid alignment procedure, is the handling of in-
put data with smooth deformations. This problem originates from
the minimization of squared distance across the surface during the
final, local refinement stage: rather than allowing regions to have
larger deviations while leaving other regions in place, ICP dis-
tributes the error smoothly, which is - in this case - the wrong solu-
tion. Fig. 10 illustrates this problem by example, using the bottom
of the specimen block model (viewed from below). Here, heavy
bending of the bottom area of the part led to a strong and smooth
deformation. During our evaluation, this case was recognized as a
failure, since it was found to be too different from the manually ob-
tained ground truth. Similar problems occurred for the mechanical
part 2 object, for which the evaluated algorithms showed the small-
est success rate. Solving such problem efficiently, fully-automated
fashion is a challenging task, and it is unclear how a reliable solu-
tion could look like. As we already do locally, using the parameter
δH ), any solution would need to reliably model the expected large,
global deviations, in order to distinguish between expected devia-
tions and registration errors.

6. Conclusion

Within this paper, we have summarized some existing approaches
for registration of range images against 3D scans. Then we demon-
strated, that a basic RANSAC strategy with some modifications

speeds up registration time and success rate for high precise scans
without noise. Our main use case is automated registration for
Nominal/Actual comparison during quality control. Our key find-
ing is that the common LCP measure is error-prone, regarding the
classification of results during global alignment. We have therefore
employed an additional quick ICP stage during the main RANSAC
procedure, along with a validation based on the Hausdorff distance.
For our evaluation, we have used different kinds of 3D-printed
models, which have been scanned with two different professional
high-precision devices. We demonstrated that our method is able to
outperform the current state of the art when considering both pri-
mary goals, registration speed and registration performance (suc-
cess rate).

Different directions are possible for future work. For the sam-
pling step, clearly, different sampling strategies than pure random
sampling are possible. We believe that a very regular sparse sam-
pling could lead to less features getting captured in total, compared
to random samples. In order to capture important geometric fea-
tures for matching, we could therefore go one step further and
weight the samples by some form of saliency measure, for example
using the recent method of Tasse et al. [TKD15]. Such a weighted
sampling, however, would also have an impact other stages of the
pipeline, for example the search for triangles inside the sampled
point data during global alignment. Therefore, this topic needs fur-
ther investigation. The investigation of alternative methods for local
registration, as proposed by Pottmann et al., also seems a promising
direction, in order to speed up the reoccurring local alignment task
within our algorithm [PHYH06]. The good quality of our results
is mainly due to our Hausdorff-based classification method, which
allows us to reject bad candidates at early stages of registration, but
also to judge the quality of the outcome to a certain extent. In the
future, it will be interesting to investigate how a conservative classi-
fication of results could look like. Given the possibility of ambigu-
ous registration results, this is a very challenging task. We believe
that recognizing such ambiguities, for example by using symmetry
detection or sliding window methods during registration, is a key
aspect within this challenge.
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