
SRC - A Streamable Format for Generalized Web-based 3D Data Transmission

(a) 17% triangles,
low-resolution texture

(b) 86% triangles,
low-resolution texture

(c) 86% triangles,
high-resolution texture

(d) 100% triangles,
high-resolution texture

Figure 1: Streaming of mesh data, progressively encoded with the POP Buffer method, using our proposed SRC container format. We
minimize the number of HTTP requests, and at the same time allow for a progressive transmission of geometry and texture information, using
interleaved data chunks. Our proposed format is highly flexible, well-aligned with GPU structures, and can easily be integrated into X3D.

Abstract

A problem that still remains with today’s technologies for 3D as-
set transmission is the lack of progressive streaming of all relevant
mesh and texture data, with a minimal number of HTTP requests.
Existing solutions, like glTF or X3DOM’s geometry formats, either
send all data within a single batch, or they introduce an unnecessary
large number of requests. Furthermore, there is still no established
format for a joined, interleaved transmission of geometry data and
texture data.

Within this paper, we propose a new container file format, entitled
Shape Resource Container (SRC). Our format is optimized for pro-
gressive, Web-based transmission of 3D mesh data with a minimum
number of HTTP requests. It is highly configurable, and more pow-
erful and flexible than previous formats, as it enables a truly pro-
gressive transmission of geometry data, partial sharing of geometry
between meshes, direct GPU uploads, and an interleaved transmis-
sion of geometry and texture data. We also demonstrate how our
new mesh format, as well as a wide range of other mesh formats,
can be conveniently embedded in X3D scenes, using a new, mini-
malistic X3D ExternalGeometry node.

CR Categories: I.3.2 [Computer Graphics]: Distributed/network
graphics— [I.3.6]: Methodology and Techniques—Graphics data
structures and data types

Keywords: WebGL, X3D, X3DOM, Compression, 3D Formats,
Streaming

1 Introduction

Recently, various efforts have been made in order to design file
formats for transmission of 3D geometry, for the use with high-
performance 3D applications on the Web. The ultimate goal is to
design a solution that scales well with large data sets, enables a pro-
gressive transmission of mesh data, eliminates decode time through
direct GPU uploads, and minimizes the number of HTTP requests.
Notable results include the WebGL-Loader library [Chun 2012],
X3DOM BinaryGeometry Containers [Behr et al. 2012], and the
GL Transmission Format (glTF)1.

However, a problem that still remains is the lack of progressive
transmission in almost all of those formats. While X3DOM pro-
vides an experimental implementation of progressive geometry
transmission, it can only obtain batches of index and vertex data
over multiple HTTP requests, which potentially becomes a huge
drawback with larger scenes. The Khronos group’s glTF proposal,
on the other hand, is able to deliver an arbitrary number of mesh
data buffers within a single file, but it completely lacks any mecha-
nisms for progressive transmission.
The overall lack of a working format for progressive transmission
of binary mesh data is also due to the missing support for progres-
sive downloads of binary data in current implementations of the
XmlHTTPRequest (XHR) specification. Luckily, there is already a
W3C draft for the so-called Streams API, which will extend XHR
and solve this problem in the near future. Figure 2 illustrates the
advantage of using the Streams API over the current XHR. Still,
there is no existing 3D format which is able to fully exploit this up-
coming API.
Finally, there is no established format that allows an interleaved
transmission of texture data and mesh data. As a consequence, the
point in time at that a textured mesh is fully loaded depends on at
least two different downloads, and is therefore pretty random.

Within this paper, we propose the Shape Resource Container (SRC)
format, a new file format for progressive transmission of 3D ge-
ometry and texture data. Our contributions can be summarized as
follows:

1https://github.com/KhronosGroup/glTF

Single XHR

Request
Reply

Multiple XHRs

Request Request Request
Reply Reply Reply

Streaming XHR

Request
Reply Reply Reply

Figure 2: Different methods of using XmlHTTPRequest. Request-
ing a single file prevents processing until the transmission has com-
pleted. Partial requests allow early processing, but at the costs of
additional overhead for each request. The Streams API provides
progress events, without any additional request.

• We introduce buffer chunks as a new concept for progressive,
interleaved transmission of indices, vertex attributes, and even
textures, with an arbitrary small number of HTTP requests.

• We show how to efficiently speed up progressive texture re-
trieval, by including support for compressed texture data in
our proposed format.

• We show how to embed our format, as well as other exter-
nal geometry formats, into X3D scenes, by proposing a new,
minimalistic X3D node.

• We demonstrate several use cases that are all covered by our
format, showing its high flexibility, as well as its potential
suitability for becoming a future standard.

Our proposed ExternalGeometry node serves as a very minimal-
istic interface to SRC content, and we believe that it could easily
be translated in order to use our format within other declarative
3D solutions [Sons et al. 2010; Jankowski et al. 2013], with non-
declarative 3D frameworks on the Web (like Three.js2, for instance),
or even within 3D desktop applications.

This paper is structured as follows: Within Section 2, we summa-
rize the state of the most relevant previous work. This section also
contains brief comparisons between our proposed format and the
currently existing ones. Section 3 introduces our proposed SRC
format in detail, and especially discusses its novel aspects. In Sec-
tion 4, we describe several use cases that demonstrate the efficiency
and flexibility of our proposed X3D node and mesh data format,
showing that it serves as a generic geometry container in high-
performance X3D applications. Finally, Section 5 concludes with a
summary.

2 Previous Work

X3DOM Binary Geometry. A major drawback of existing declar-
ative 3D mesh containers, in XML3D [Sons et al. 2010] as well as
in X3DOM [Behr et al. 2009], is the missing ability to merge mul-
tiple drawable patches of a single mesh into a single shape. This
might be necessary because of several reasons, like, for example,
view-dependent streaming and geometry refinement, or WebGLs
restriction of allowing only 16 bit indices during rendering. Con-
sider, for example, the armadillo model from Fig. 3, which has been

2threejs.org

subdivided into three different chunks (in this particular case, the
main reason was the mentioned 16 bit index limit). In X3DOM,
this subdivision is also reflected in the declarative layer, by using
three Shape nodes, each containing a separate Appearance node
and a separate BinaryGeometry node [Behr et al. 2012]. As a conse-
quence of this separation, the InstantReality AOPT and X3DOM vi-
sualization pipeline does not allow to encode and transmit the three
sub-meshes all in one file. Furthermore, an X3DOM author must
maintain three different Shape, Geometry and Appearance nodes,
instead of just one. Finally, this tight coupling of the rendering rep-
resentation with the scene-graph and the transmission format also
potentially leads to large, cluttered HTML files.
Our proposed ExternalGeometry node and SRC format solve this
problems by allowing a random mapping between the number of
transmitted files and identifiable Shape nodes (cp. Fig. 7).

XML3D Mesh Data Composition. The XML3D declarative 3D
framework includes a powerful data flow definition concept, enti-
tled XFlow [Klein et al. 2012]. The concept is based on a data
element, which represents a mesh data table with data fields (for
instance, indices, vertex positions, vertex normals and vertex col-
ors). Since all data elements can include other data elements, and
since they may also add own definitions for single data fields, dy-
namic composition, overriding and re-use of mesh data among sev-
eral mesh instances is possible. Still, there is no binary format for
arbitrary pieces of mesh data, overriden attribute arrays are usually
specified as strings. This in turn causes huge decode overhead, and
it leads to unnecessarily large HTML files. Furthermore, a progres-
sive transmission of mesh data, as it is enabled by our proposed
format, is not possible within XML3D.

glTF. The GL Transmission Format (glTF), as proposed by the
Khronos Group, is an optimized format for straightforward trans-
mission and rendering of 3D assets. While COLLADA [Arnaud
and Barnes 2006] has been designed as a format for asset exchange
between 3D authoring tools, glTF is intended to be a delivery for-
mat, specifically designed for rendering, and not intended for fur-
ther authoring.
A glTF scene description, transmitted as a separate JSON file, along
with the texture images and binary mesh data containers, is al-
ways divided into several parts. The buffer layer contains a ba-
sic, raw data description, usually by referring to an external binary
file, which is, on the client side, represented as an ArrayBuffer ob-
ject, being the raw result of an XmlHTTPRequest that triggered the
download. On top of that buffer layer, a bufferView layer manages
several sub-sections of buffer objects, where each sub-section is
usually represented as a separate GPU buffer on the client side. A
buffer might, for example, be subdivided into two separate buffer-
Views that each map to a GPU buffer, one for index data and one
for vertex data. On top of the bufferView layer, there is a layer with
accessor objects (representing the graphics API’s views on buffer-
View objects) that realize indices and vertex attributes. Two dif-
ferent accessors, one for normal data and one for position data, for
example, might then refer to different parts of a single bufferView,
potentially in an interleaved fashion. The highest hierarchical level
of mesh data within glTF is represented by the mesh layer. A mesh
entry always refers to one or more attribute accessors and index
data, along with a material and a primitive type used for drawing
(e.g., TRIANGLES).
Because of its straightfowrward, structured design, mapping very
well to client-side GPU structures, glTF might seem like an ideal
solution for many 3D Web applications. However, our aim, which
was to have a flexible mesh data transmission format for the use
within high-performance X3D scenes, could not been reached with
glTF. Amongst others, this was due to the following reasons:

• The glTF specification does not support any form of progres-
sive transmission of mesh data.

• The glTF specification does not allow for an interleaved trans-
mission of mesh geometry data and texture data, and it does
not support any GPU-friendly texture encoding.

• The JSON-based scene description of glTF partially overlaps
with existing concepts in X3D. Examples are lights, shaders
and other material descriptions, and a node hierarchy.

At the moment, there are no profiles available in glTF, so there is
no possibility to request a description which contains solely geom-
etry data. Within this paper, we provide a solution to all mentioned
problems by introducing our SRC format. We also present a new
X3D node, entitled ExternalGeometry, which has a well-defined,
minimal interface to the external mesh data description. We espe-
cially show how assets within our proposed SRC format can be ref-
erenced within the X3D description, and why the proposed concept
is superior to existing approaches in XML3D, X3D and X3DOM.

Progressive Geometry Transmission. Progressive Meshes, as
originally proposed by Hoppe et al. [Hoppe 1996], have been ex-
tensively studied within the past two decades, with a strong focus
on compressing progressively transmitted mesh content, in order to
optimize the rate-distortion performance [Peng et al. 2005]. Since
it seems like an ideal candidate technology for the 3D Web con-
text, there have been various efforts to port progressive meshes to
the Web, for example, by integrating the method with X3D [Fogel
et al. 2001; Maglo et al. 2010]. Recently, Lavoué et al. have pro-
posed a progressive mesh method that aligns well with current 3D
Web technology [Lavoué et al. 2013]. However, this method is cur-
rently only working with manifold geometry, and it might still in-
troduce significant decode times, especially on mobile devices with
low compute power.
As an alternative for a progressive, direct upload of downloaded
mesh data to the GPU, without any decode overhead, there are cur-
rently two known alternatives. The first one is to converting the
mesh to be encoded to a Streaming Mesh [Isenburg and Lindstrom
2005]. This approach reorders the input mesh data in such a way
that it can be processed in a sliding window fashion, using a finite,
fixed-size memory buffer. This is not only useful for out-of-core
mesh processing algorithms, but it also gives clients a guarantee
that indices never refer to vertices that have not been received yet.
It therefore enables a simple progressive transmission of mesh data,
by appending downloaded data directly to existing buffer content.
In a similar spirit, the POP Buffer algorithm reorders mesh data
with the aim of straightforward progressive transmission [Limper
et al. 2013]. The reordering scheme is based on the degeneration
of a large amount of triangles when performing aggressive quanti-
zation. By rendering triangle data with increasing precision, and
sending, for each precision level, only the non-degenerate trian-
gles, a progressive transmission of the whole mesh data is achieved.
The second row of Fig.3 shows an example. Nevertheless, the high
speed and lack of CPU-based decoding steps comes at the cost of
a rather bad rate-distortion performance, compared to progressive
mesh methods that explicitly adapt the topology of the mesh (e.g.,
compared to the approach of Lavoué et al. [Lavoué et al. 2013]).
For streaming meshes, there is currently no Web-based rendering
library that applies this method for progressive transmission. The
POP buffer method has been experimentally implemented inside
the X3DOM library. However, the corresponding X3DOM POP-
Geometry node uses a set of child nodes to represent the different
precision levels, and each chunk of triangle data is loaded from a
separate file. This obviously leads to an unnecessary large num-
ber of HTTP requests, and it furthermore significantly increases the
size of the application’s HTML page.

HEAD LOD_0 LOD_1 LOD_2

HEAD LOD_0 REFINEMENT_1

HEAD SUBMESH_0 SUBMESH_1 SUBMESH_2

REFINEMENT_2

GPU Memory

GPU Memory

GPU Memory

Mesh / Buffer Properties

Vertex Data

Index Data

Transmitted
File

Transmitted
File

Transmitted
File

Figure 3: Transmission and GPU storage of mesh data, for differ-
ent data subdivision schemes. From top to bottom: Sub-Meshes,
Discrete LOD, Progressive LOD. In the third case, all received
chunks are progressibely concatenated to larger GPU buffers. This
efficient, yet flexible coupling of transmitted data with its GPU rep-
resentation is not possible with any existing transmission format.

Texture Compression. Texture compression can drastically re-
duce the amount of memory textures require, which is especially
helpful for transmission. Texture compression support of WebGL
allows the direct upload of compressed texture data to the GPU
without the need for an additional unpacking or decoding step. The
Khronos Group has proposed WebGL extensions to support several
texture compression formats. Currently, the most popular extension
adds support for the patented S3TC texture compression algorithms
3. This group of lossy compression formats, labeled DXT1 through
DXT5, achieves a fixed compression rate of 6:1 4. According to
WebGLStats5, as of now, 77% of the WebGL-enabled browers, that
visit their webpage, support this extension.

3 The SRC Format

Within this section, we present the most important features of our
proposed SRC format. We first provide some motivation and fea-
tures of the format itself, and we discuss its basic integration into
X3D scenes. After this, we describe how our proposed X3D Ex-
ternalGeometry node can be used to achieve highly flexible and
dynamic compositing of mesh data.

3http://www.khronos.org/registry/
webgl/extensions/WEBGL compressed texture s3tc/
4https://www.opengl.org/wiki/S3 Texture Compression
5http://www.webglstats.com

3.1 Structured Mesh Property Encoding

While glTF does not fulfill all of the requirements for our proposed
format, it has successfully served as a base for our thoughts, and
we believe that we can easily motivate and explain our contribu-
tions by first considering a glTF description. This is especially true
as both formats use a kind of structured, hierarchical description of
the mesh properties. The great advantage of this hierarchical design
is that it maps to GPU structures on the client side in a straightfor-
ward manner. It furthermore allows multiple meshes to freely share
a random number of accessors to index and vertex data, which is not
that easily possible with X3DOM’s geometry containers, for exam-
ple. Since it generally maps very well to rendering structures on the
client side, we have decided to adapt some of the basic structures
of glTF. However, we have identified several aspects of glTF that
made it unuseable for our purpose (see Section 2, and we will show
how to overcome this issues within the following.

Furthermore, we did not want to merge structural information about
the scene into our 3D asset delivery format (which is a general prob-
lem with X3D, but in parts also applies to glTF). Therefore, we did
not include, for instance, information about lighting, or about the
scene hierarchy, into our SRC header.
Besides that, we have performed some modifications of existing
glTF concepts, for example by differentiating between indexView
and attributeView objects. For more information about the details
of the basic structure of our format, the interested reader is referred
to the appendix of this paper (Section 6).

We have also identified a problem related to the use of quantized
position data. In glTF, there are min and max attributes available
for each mesh attribute accessor, specifying extreme values within
the corresponding buffer. However, this does not help in the case of
converting normalized, quantized data (for example, in a 16 bit inte-
ger format) to an original floating-point range. Moreover, if cracks
should be avoided, data within all sub-meshes must be quantized
with the same bounding box scale [Lee et al. 2010]. During decod-
ing, an additional offset vector is then used to translate the data to
the original position. We have therefore decided to introduce two
new attributes,decodeOffset and decodeScale, which are specified
for each attributeView object. With the values of decodeOffset and
decodeScale being denoted as vectors ~do and ~ds, and ~pq being a
quantized position read from a transmitted buffer, the decoding to
floating-point position values ~p on the client side is performed as
follows:

~p(~pq) =
~pq + ~do

~ds

This process can take place on the CPU side, or on-the-fly during
rendering (which is likely to be the most efficient solution in most
cases). If decodeOffset and decodeScale contain values of [0, 0,
0] and [1, 1, 1], the transmitted buffer values do not need to be
decoded on the GPU, but can directly be used for rendering. For
more details about the decoding of quantized positions, to achieve
a crack-free composed mesh, the interested reader is referred to the
work of Lee et al. [Lee et al. 2010]. In a similar way, the decodeOff-
set and decodeScale attributes can be used to decode quantized nor-
mals and texture coordinates. Note that the min and max attributes
are not available for attributeView objects in our SRC header. In-
stead, we are specifying bounding box information with bboxCen-
ter and bboxSize attributes, available for each mesh.

Our aim was that texture data can be included in a very similar
fashion like mesh attribute data. Therefore, we have not only in-
cluded a separate textures list, but also a list of textureView objects
that access texture data from the file body. This not only saves us

Chunk

1..*

TextureImage

Texture

1..*

1..*

0..1

Accessor

BufferView

Mesh

1..*

1..*

1..*

1

0..1

Figure 4: Basic structure of our proposed SRC format. All struc-
tured information is delivered in the SRC header, binary data
chunks represent subsequent sections of the file body.

separate requests for each texture file, but it also enables a progres-
sive transmission of texture data, and interleaved transmission with
mesh attributes (see Section 3.2 and Section 3.3). Furthermore, we
allow that the texture data, which is transmitted using one or more
buffer chunks, is encoded in a format that can directly be uploaded
to the client’s GPU, without any decode time. This can either be a
raw format, or an array with compressed texture data in an S3TC
format. The resulting basic structure of the classes used for hierar-
chical mesh description is illustrated by Fig. 4.

Another point that is also worth noting is the fact that we are al-
ways transmitting the header and body of our SRC format in a
single file. This saves us an additional request for the header in-
formation, and we believe that this aspect is especially relevant for
larger scenes. The header is usually of negligible size, therefore we
currently encode it in a standard ASCII JSON format. This has the
advantage that the client application can still easily use it, via a stan-
dard JavaScript call to JSON.parse(). For the future, however, we
reserve the possibility to use different header encodings. Therefore,
our the first three words of our file are a magic number, identifying
our format, an identifier for the header format and its version, and
finally the length of the header, given in in bytes.

3.2 Progressive Transmission of Mesh Data Buffers

As can be seen in Fig. 3, progressive transmission methods require
that the final mesh data buffers are transmitted in an interleaved
fashion. We note that the X3DOM POPGeometry node achieves a
similar behavior, by maintaining a separate HTTP request for each
refinement. This, however, introduces a tight coupling between the
transmission layer and the rendering layer, which means that the
number of LOD refinements will always determine the number of
requests. Since our goal is to minimize the necessary amount of
HTTP requests, we have decided to enable the transmission of all
LOD refinements in a single file. This in turn requires us to change
the base layer of our description hierarchy, introducing the concept
of buffer chunks. In our SRC definition, a buffer chunk is simply a
slice of a particular mesh data buffer (i.e., a slice of a vertex attribute
buffer or index buffer).

In the trivial case, each mesh data buffer consists of a single chunk.
Generally, we allow the encoding application to arrange the single
slices of all mesh data buffers in a random order, wich makes it
possible to interleave several buffers during transmission. A client
application can, for example, initially receive a first batch of index
data along with the attributes of the referenced vertices, and render
an intermediate representation as long as the rest of the buffers is

being progressively downloaded in the background. In general, our
SRC format allows to include all use cases where mesh geometry
and connectivity information is transmitted in a progressive man-
ner, like POP Buffers or Streaming Meshes, for example.

3.3 Progressive Transmission of Textures

Since our concept of texture representation within our SRC format
is also built on the concept of buffer chunks, as it is already used
for mesh geometry, we allow that texture information is transmitted
along with mesh geometry data in an interleaved fashion. Although
we have not yet tested our format with a truly progressive trans-
mission format for texture data, this could basically be achieved
by using existing progressive image transmission methods, like the
Adam7 encoding scheme of the PNG format. We assume that a
progressive representation of a texture is always given at resolu-
tions that increase, in each dimension, by a factor of two, with each
new texture image. This is mainly due to the usage of the separate
texture images in the form of MIP map levels at the GPU. For each
texture, we therefore store the length of each image that belongs to
the texture within the SRC header, using an attribute entitled im-
ageByteLengths. The last number in this list is always the size, in
bytes, of the full-resolution texture image, while the others repre-
sent the sizes of the respective MIP map levels, starting with a MIP
map size of 1 × 1 pixels. This way, client applications are able to
progressively retrieve all MIP map levels, and use them to render
intermediate stages during texture data retrieval (cp. Fig. 1)6.

At this point, the reader might find that a progressive transmission
of MIP map levels might be unnecessary for common textures, as a
fast generation on the client’s GPU is also possible. However, with
the possibility to directly use compressed texture data, it becomes
necessary to transmit also the pre-computed MIP map levels.

3.4 Integration with X3D

Integrating SRC Content with X3D scenes. We have designed
our SRC format in a way that allows Web applications to use it as a
self-containing geometry container. This is a huge conceptual dif-
ference to X3DOM’s BinaryGeometry and POPGeometry nodes,
where all information needed for interpreting the binary data files
is encoded directly inside the X3D document (cp. Fig. 5), or as
part of the binary data file extension (using extensions like ’.bin+8’
or ’.bin+4’). Although X3D scene authors can decide to transfer
geometry declarations to external X3D files, using the inline mech-
anism, this does not solve the basic problem that details of the ge-
ometry description, like, for instance, the data type of the vertex
data buffers, have been included in the X3D declaration of the re-
spective nodes.

We decided to follow a similar approach as employed by XML3D,
in form of the mesh tag: basically, all our tag needs is a reference to
a self-containing external file. This reference is specified using the
url field, linking to a file which then contains all relevant geometry
description and data.

An important aspect, which deserves special attention, is the possi-
bility to use two fields of the surrounding Shape node, bboxCenter
and bboxSize, which are describing the axis-aligned local bounding
box of the corresponding model. The values could, for example, be
computed by the authoring tool, which was used to export the X3D
scene. The interpretation of those fields should be handled by the
client, based on the following rules:

6We note at this point that an efficient implementation of this progres-
sive texture rendering method might be depending on MIP level clamps, a
feature that is not available with WebGL 1.0. However, it is already part of
the Webl 2 specification.

<Shape>
<Appearance>
<Material diffuseColor=’0.6 0.6 0.6’

shininess=’0.00234375’/>
<ImageTexture url=’"duck.png"’/>

</Appearance>
<BinaryGeometry DEF=’BG_0’ solid=’false’

vertexCount=’12636’
position=’13.44 86.94 -3.70’
size=’165.47 154.04 115.25’
primType=’"TRIANGLES"’
index=’binGeo/indexBin.bin’
coord=’binGeo/coordBin.bin+8’
normal=’binGeo/normalBin.bin+4’
texCoord=’binGeo/texCoordBin.bin+4’
coordType=’Int16’
normalType=’Int8’
texCoordType=’Uint16’/>

</Shape>

X3DOM BinaryGeometry
<Shape>
<Appearance>
<Material diffuseColor=’0.6 0.6 0.6’

shininess=’0.00234375’/>
<ImageTexture url=’"duck.src#tex_1"’/>

</Appearance>
<ExternalGeometry url=’duck.src’/>

</Shape>

ExternalGeometry

Figure 5: Two X3D encodings of the Collada Duck example file,
comparing X3DOM BinaryGeometry (top) and our proposed SRC
format and ExternalGeometry node. The BinaryGeometry node
leads to a cluttered X3D (or HTML) document, as it contains many
fields that are not interesting for the scene author.

1. The bboxSize field should be considered to contain an unspec-
ified size, if at least one of the three dimensions has a negative
value (otherwise, the field is considered as specified). Follow-
ing the X3D specification, the recommended way to commu-
nicate an unspecified size is to use a value of -1 -1 -1 for the
bboxSize field.

2. If the bboxSize field is specified, the bboxSize and bboxCen-
ter fields are used to determine whether the mesh should be
loaded. If the mesh has already been loaded, the bboxSize
and bboxCenter fields can be used for visibility determination
(e.g., view frustum culling).

3. If the bboxSize field is unspecified, the bboxSize and bbox-
Center fields are completely ignored during scene loading and
rendering, following the X3D specification. We allow the ad-
ditional possibility that the X3D browser, as a fallback, per-
forms a lookup for valid bounding box data in the header of
the corresponding external file.

The proposed design allows the client application to decide at which
point in time an SRC file, representing 3D information in a specific
area of the scene, should be loaded. This is especially helpful to
reduce the number of HTTP requests. We note that the second rule
also implies that the bboxSize and bboxCenter fields, if valid, are
used for culling, instead of using the internal bboxCenter and bbox-
Size fields of the SRC header. If a scene author wants to use the
bounding box data from the external file instead, the third rule can
be used for this purpose by setting the bboxSize field to the unspec-
ified value -1 -1 -1.
While this redundancy is, in the context of X3D applications, ba-
sically not necessary, it keeps the SRC format self-containing,
thereby allowing bounding box information in the SRC header to
be used within other rendering frameworks. Please note that us-
ing the size and center fields is just an option - if they are invalid,

boundinx box information is retrieved from the SRC header. This
enables the X3D-based Web application to dynamically include any
external SRC file, without prior knowledge about its corresponding
bounding volume.

Addressing SRC File Content. One of our intentions was that
our file format should be useable as a self-containing geometry
container, within a wide variety of application scenarios. To fur-
ther control the number of HTTP requests, which must be issued
by the client application to receive all currently relevant mesh data,
we have decided to add the possibility to encode multiple meshes
within a single file. This in turn demands some form of addressing
scheme, that can be used to refer to specific parts of the file content.

For X3D, we propose a simple suffix scheme that enables us to
refer to a specific mesh, or texture, within a file. Within our ad-
dressing scheme, a hash symbol must be used to separate the file
name from the identifier of the respective mesh or texture. This
way, X3D ImageTexture elements can refer to the texture that be-
longs to a specific part of geometry, and we can ensure that both are
always loaded together. As the ImageTexture element accepts vari-
ous image formats, a combination of a geometry file in SRC format
with external textures is still easily possible.

The Source Node. A great advantage of data flow systems, like
the XFlow System for declarative 3D content, is that they are able to
combine data elements from various sources. In the case of XFlow,
a mesh can be loaded from a file and re-used in several places. A
custom attribute override can then be used to alter individual prop-
erties (like vertex colors, for example) for each instance, and to keep
all of the other attributes from the original mesh. To allow such a
dynamic behavior with our new container, there are generally two
possibilites.

First, variants that exist within a single SRC container can simply
be addressed by using the corresponding identifier when referring
to the file. A SRC file could, for example, contain a single set of
vertex positions and normals, three different sets of vertex colors,
and three different meshes that realize the three variants. However,
this scheme does not allow to dynamically combine data from var-
ious SRC files.

The second possibility to override single mesh properties, which
also works when merging data from different SRC files, is to use a
special declaration that assigns data from another source to a spe-
cific mesh property. To realize this declaration within X3D, we pro-
pose a Source node. The name is inspired by the source tag, known
from HTML5 video embedding. However, there are some major
differences between our Source node and this tag. While the tag
lists alternatives for the corresponding video, our node may be used
to provide different kinds of mesh attributes or indices, allowing for
partial overrides of mesh data. Therefore, we also use an optional
field entitled name, which identifies the corresponding attribute, if
any. Second, our Source node uses the more X3D-conformant field
name url, instead of src, to specify the location of the data to be
loaded.

A Source node must always be the child of an ExternalGeometry
node, and an ExternalGeometry node may have an arbitrary number
of Source nodes as children. Fig. 6 shows an example, overriding a
single color attribute of a mesh. The name field contains the name
of the specific attribute, as it was specified in the original container
file (in the example: in file duck.src). Note that we have used an
extension of the mentioned addressing scheme, using a dot and an
attribute name, to refer not only to a particular mesh, but to a partic-
ular attribute of that mesh. With our format it is, nevertheless, also
possible to refer to an attribute that is encoded as a standalone file,

<Shape>
<Appearance>
<Material diffuseColor=’0.6 0.6 0.6’

shininess=’0.00234375’/>
<ImageTexture url=’"duck.src#tex_1"’/>

</Appearance>
<ExternalGeometry bboxCenter=’1 3 5’ bboxSize=’2 3 2

url=’duck.src’>
<Source name=’color’

url=’duckAltColors.src#mesh_1.color’/>
</ExternalGeometry>

</Shape>

Figure 6: Overriding mesh properties, using our Source node.

or to the first attribute within a file that has a matching name.

Furthermore, we allow several Source nodes to be nested. This
way, we enable scene authors to recursively override several mesh
attributes. The ExternalGeometry node acts as a top-level variant
of the source node, with the difference that is has no name field.
Nevertheless, its url field can be used to include a set of mesh data
that is then partially overridden by child Source nodes. If multiple
Source nodes are specified as direct children of a ExternalGeometry
node, but the url of the ExternalGeometry is empty, the data from
the Source nodes is interpreted as separate parts, which are jointly
representing the corresponding mesh (see the right part of Fig. 7 for
an example).

The following rules are used to determine which attributes from the
file, specified via a Source node, using the (url) field, are used to
override the original attribute data (coming from a parent node that
is either a an ExternalGeometry node, or another Source node):

1. If the name field is empty (which is the default value), all
mesh data from the file is used to override original index data
and attribute data with the same identifiers, if any.

2. If the name field is not empty, the following rules are applied
to replace a particular attribute of the original data, which has
a name which matches the value specified in the name field:

(a) If the url field contains a reference to a specific attribute
of a specific mesh, this attribute is used (regardless of its
name) to replace the original attribute.

(b) If the url field contains a reference to a specific mesh
(but not to a specific attribute), the first attribute of this
mesh, with a name that matches the original attribute’s
name, is used.

(c) If the url field contains only a reference to a file (but not
to a specific mesh or attribute within the file), the first
occurence of an attribute, with a name that matches the
Source node’s name field, is used.

This way, it also becomes simple to override attribute data with new
data from a single file, which we believe is interesting especially for
application scenarios like simulations and scientific visualization.

4 Experimental Results

We have included a first implementation of the ExternalGeometry
and SRC exporter into InstantReality’s AOPT tool7. A very basic
version of the loading and rendering code has been included in the
X3DOM framework. Furthermore, we have set up a project page,
which will enable the interested reader to track progress of our im-

7http://www.instantreality.org

BufferViews

Chunks

Accessors

Textures / Meshes

Img_1 Img_2

Pos_1 Nor_1

Geo_1Tex_1

Geometry Data Texture Data Rendering Parameters

TextureImages

Figure 8: Structure of the body of an example SRC file, containing
the data shown in Fig. 1.

plementation, including both, exporter and renderer8. Our current
implementation of the SRC encoder and renderer is still in an ex-
perimental state. Nevertheless, after considering a wide variety of
use cases, we are confident that our format is are able to cover the
needs of many different 3D Web applications. Within this section,
we illustrate some of them by example.

Sharing SRC Data. Since we want to have full control over the
number of HTTP requests that is introduced by our 3D Web appli-
cation, we have designed our format in such a way, that one SRC
file may contain an arbitrary number of assets. The single meshes
and textures, and even single mesh attributes, can be referenced
from external documents (for instance, from an X3D scene) by us-
ing our proposed addressing scheme. Fig. 7 shows two example
scenes, illustrating different use cases for accessing a shared SRC
file.

Progressive Transmission. We also found that a great property
of our SRC format is the fact that encoding applications can specify
an exact, progressive order for the download of a batch of mesh data
buffers, belonging to a mesh, by arranging the chunks in a corre-
sponding order inside the file body. Fig. 1 shows some intermediate
stages of streaming a scanned elephant sculpture model. The struc-
ture of the corresponding SRC file body is shown in Fig. 8. As can
be seen, texture data and geometry data (in this case, non-indexed
triangles) is transmitted in an interleaved fashion. Low-resolution
texture data is transmitted first, and used throughout the first stages
of geometry refinement. As soon as the geometry is available at a
reasonable quality, the difference between the low-resolution tex-
ture and the high-resolution variant becomes visible. At this point,
additional texture data is streamed, before a final geometry refine-
ment take place.
Since the chunks are still plain binary containers, intended for direct
GPU upload (in WebGL, for instance, using the bufferSubData
function), the performance of the 3D Web application is not touched
by introducing the concept of buffer chunks. Please note that we
are able to pre-allocate each buffer, as soon as we have received
the SRC header, and that a separate allocation of GPU memory for
each incoming chunk is therefore not necessary.

Texture Compression. A novelty of our proposed format, com-
pared to existing approaches in X3DOM, for instance, is the pos-
sibility to use compressed textures. This does not only result in a
significantly reduced GPU memory consumption, but also has sev-

8http://www.x3dom.org/src

Figure 9: Siena cathedral, rendered in a Web browser. In such
cases, using texture compression is the most efficient way to reduce
GPU memory consumption, download time and decode time.

eral advantages in a 3D Web context. Fig. 9, for instance, shows a
rendering of the Siena cathedral. The whole scene uses 79 different
textures, with a total size of 241 MB in PNG format. Compressed
to DXT1 format, the total size of all texture files shrinks to 78 MB,
with just a minimal notable difference. Furthermore, the startup
time of the application can this way be significantly reduced.
We have noted that this approach is very similar to existing ap-
proaches for mesh geometry: by allowing a direct GPU upload of
downloaded data, the startup time of the application is significantly
reduced (cp. [Behr et al. 2012], for example).

Externalizing Shapes Nodes. We have found that, instead of
just externalizing data from Geometry nodes, it can become useful
to externalize all data within a Shape node. This is especially im-
portant for large scenes, in order to reduce the overall size of the
Web application’s HTML page. Therefore, we have introduced an
additional X3D node, entitled ExternalShape. As the name implies,
this special kind of Shape node, that has no children, enables us to
include a mesh, or all meshes from an SRC file, via its url field. To
represent appearance information inside an SRC file, we allow the
mesh objects inside the header to refer to a material object via its
ID, just like it is done in glTF. Such a material description can then,
for instance, include an X3D-compatible material description, as
well as references to textures. With this powerful concept, we can
even use ExternalShape nodes in a similar fashion like Inline nodes,
to include multiple geometries with different materials, represent-
ing a single, large 3D object.

5 Conclusion

Within this paper, we have presented a novel, streamable format
for transmission of 3D mesh data, entitled Shape Resource Con-
tainer (SRC). Our format is built on latest technological develop-
ments, like the ability to stream binary data with XHR, and the use
of compressed textures in upcoming WebGL 2.0 applications. We
allow the authors of high-performance 3D Web applications to min-
imize the number of HTTP requests, by progressively transmitting
an arbitrary number of mesh data chunks within a single SRC file.
Furthermore, an interleaved transmission of texture data and mesh
geometry is possible, allowing for full control over the order of pro-
gressive 3D asset transmission.

In order to use our format within declarative 3D scenes, we have
discussed an integration of SRC content into X3D. Our proposed
ExternalGeometry node can be used to include a random number
of 3D mesh geometry instances into a single Shape node. Further-
more, content from a single SRC can be distributed to a random
number of Shape nodes. Using a set of dedicated Source nodes as
children of an ExternalGeometry node, potentially in a nested fash-
ion, we can furthermore realize a wide range of mesh data composi-

HEAD MESH_1 TEX_1 MESH_2

<ExternalGeometry url='foo.src#mesh_2'/>

<ExternalGeometry url='foo.src#mesh_1'/>

<ImageTexture url='foo.src#tex_1'/>

...

...

<X3D/>

<X3D>
...

...

File 'foo.src'

X3D Scene

<ExternalGeometry>
 <Source url='arma.src#mesh_1'/>
 <Source url='arma.src#mesh_2'/>
 <Source url='arma.src#mesh_3'/>
</ExternalGeometry>

...

<X3D>
...

<X3D/>

HEAD SUBMESH_1

File 'arma.src'

SUBMESH_2 SUBMESH_3

X3D Scene

Figure 7: Accessing different content within a SRC file, from various elements within an X3D scene. Our proposed format allows a random
mapping between the number of files (and thereby the number of HTTP requests) and the number of identifiable assets within the scene.

tion schemes. This allows for dynamic updates of single attributes,
and it further enables scene authors to maximize full or partial reuse
of mesh data among several instances.

Future work includes the investigation of different header encod-
ings, for example, using Binary JSON9, or Google’s Protocol
Buffers library10. Furthermore, we would like to continue our work
on the concept of ExternalShape nodes. This includes the ques-
tion, if our concept for mesh data compositing (using Source nodes)
could be transferred to this context. Finally, an important topic for
future research is the integration of parametric geometry descrip-
tions [Berndt et al. 2005].

References

ARNAUD, R., AND BARNES, M. C. 2006. Collada: Sailing the
Gulf of 3D Digital Content Creation. AK Peters Ltd.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM: a DOM-based HTML5/X3D integration model. In
Proc. Web3D, 127–135.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and incremental
delivery of declarative 3D scenes on the web. In Proc. Web3D,
17–25.

BERNDT, R., FELLNER, D. W., AND HAVEMANN, S. 2005. Gen-
erative 3d models: A key to more information within less band-
width at higher quality. In Proc. Web3D, ACM, New York, NY,
USA, Web3D ’05, 111–121.

CHUN, W. 2012. WebGL models: End-to-end. In OpenGL In-
sights, P. Cozzi and C. Riccio, Eds. CRC Press, July, 431–454.

FOGEL, E., COHEN-OR, D., IRONI, R., AND ZVI, T. 2001. A
web architecture for progressive delivery of 3D content. In Proc.
Web3D, 35–41.

HOPPE, H. 1996. Progressive meshes. In Proc. SIGGRAPH, 99–
108.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
In Proc. VIS, 231–238.

9http://bsonspec.org/
10https://code.google.com/p/protobuf/

JANKOWSKI, J., RESSLER, S., SONS, K., JUNG, Y., BEHR, J.,
AND SLUSALLEK, P. 2013. Declarative integration of inter-
active 3d graphics into the world-wide web: Principles, current
approaches, and research agenda. In Proc. Web3D, ACM, New
York, NY, USA, Web3D ’13, 39–45.

KLEIN, F., SONS, K., JOHN, S., RUBINSTEIN, D., SLUSALLEK,
P., AND BYELOZYOROV, S. 2012. Xflow: Declarative data
processing for the web. In Proc. Web3D, ACM, New York, NY,
USA, Web3D ’12, 37–45.

LAVOUÉ, G., CHEVALIER, L., AND DUPONT, F. 2013. Streaming
compressed 3d data on the web using javascript and webgl. In
Proc. Web3D, ACM, New York, NY, USA, Web3D ’13, 19–27.

LEE, J., CHOE, S., AND LEE, S. 2010. Mesh geometry compres-
sion for mobile graphics. In Proc. CCNC, 301–305.

LIMPER, M., JUNG, Y., BEHR, J., AND ALEXA, M. 2013. The
POP Buffer: Rapid Progressive Clustering by Geometry Quanti-
zation. Computer Graphics Forum 32, 7, 197–206.

MAGLO, A., LEE, H., LAVOUÉ, G., MOUTON, C., HUDELOT,
C., AND DUPONT, F. 2010. Remote scientific visualization of
progressive 3D meshes with X3D. In Proc. Web3D, 109–116.

PENG, J., KIM, C.-S., AND JAY KUO, C. C. 2005. Technolo-
gies for 3D mesh compression: A survey. J. Vis. Comun. Image
Represent., 688–733.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: interactive 3D graphics for the
web. In Proc. Web3D, 175–184.

6 Appendix

Figure 10 shows an example of a JSON-based encoding of our SRC
header. The file contains a single mesh with a single texture, where
the geometrical data and the texture data is interleaved and trans-
mitted progressively, as shown in Fig. 1.
Please note that we have used additional meta objects to specify
application-dependent meta data. One global meta object contains
general meta data about the file content, such as a short textual de-
scription. Other meta objects are directly attached to the mesh and
texture objects. As we have used the POP Buffer method to progres-
sively transmit the triangle data, it was necessary to specify also the
progression levels (in vertices), which are associated with the mesh,
via its meta object.

{
"meta":{

"description":"This is a simple example with an elephant"
},
"bufferChunks":{

"chunk0":{
"byteOffset":0,
"byteLength":23448

},
"chunk1":{

"byteOffset":23448,
"byteLength":1849344

},
"chunk2":{

"byteOffset":1872792,
"byteLength":7669440

},
"chunk3":{

"byteOffset":9542232,
"byteLength":4767845

},
"chunk4":{

"byteOffset":14310077,
"byteLength":1551744

}
},
"bufferViews":{

"attributeBufferView0":{
"byteLength":11070528,
"chunks":[

"chunk1",
"chunk2",
"chunk4"

]
}

},
"textureViews":{

"elephantTexView":{
"byteLength":4791293,
"chunks":[

"chunk0",
"chunk3"

],
"format":"png"

}
},
"accessors":{

"indexViews":{},
"attributeViews":{

"attributeView0":{
"bufferView":"attributeBufferView0",
"byteOffset":0,
"byteStride":16,
"componentType":5123,
"type":"VEC3",
"count":2399,
"decodeOffset":[

28003.4827119521,
-29173.7907980278,
31671.6816747218],

"decodeScale":[
535.4424912549,
271.0610593755,
293.4133239205]

},

"attributeView1":{
"bufferView":"attributeBufferView0",
"byteOffset":8,
"byteStride":16,
"componentType":5121,
"type":"VEC3",
"count":2399,
"decodeOffset":[-128, -128, -128],
"decodeScale":[128, 128, 128]

},
"attributeView2":{

"bufferView":"attributeBufferView0",
"byteOffset":12,
"byteStride":16,
"componentType":5123,
"type":"VEC2",
"count":2399,
"decodeOffset":[0, 0],
"decodeScale":[656535, 65535]

}
}

},
"meshes":{

"elephant":{
"attributes":{

"position":"attributeView0",
"normal":"attributeView1",
"texcoord":"attributeView2"

},
"indices":"",
"material":"",
"primitive":4,
"bboxCenter": [51.69, -108.82, 106.83],
"bboxSize": [121.18, 239.37, 221.14],
"meta":{

"progressionMethod":"POP",
"indexProgression":[],
"attributeProgression":[

138, 594, 2262, 8478, 32238, 115584,
337764, 594924, 684972, 691878, 691908

]
}

}
},
"textures":{

"elephanttex":{
"textureView":"elephantTexView",
"imageByteLengths":[

23448,
4767845

],
"width":512,
"height":512,
"internalFormat":6408,
"border":0,
"type":5121,
"format":6408,
"meta":{}

}
}

}

Figure 10: Example, using a JSON-encoded SRC header of a scene with a single model, shown in Fig. 1. Chunks of vertex attributes are
transmitted interleaved with two texture images.

